|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/autodiff_manifold.h" | 
|  |  | 
|  | #include <cmath> | 
|  |  | 
|  | #include "ceres/manifold.h" | 
|  | #include "ceres/manifold_test_utils.h" | 
|  | #include "ceres/rotation.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | constexpr int kNumTrials = 1000; | 
|  | constexpr double kTolerance = 1e-9; | 
|  |  | 
|  | Vector RandomQuaternion() { | 
|  | Vector x = Vector::Random(4); | 
|  | x.normalize(); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | struct EuclideanFunctor { | 
|  | template <typename T> | 
|  | bool Plus(const T* x, const T* delta, T* x_plus_delta) const { | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | x_plus_delta[i] = x[i] + delta[i]; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool Minus(const T* y, const T* x, T* y_minus_x) const { | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | y_minus_x[i] = y[i] - x[i]; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(AutoDiffLManifoldTest, EuclideanManifold) { | 
|  | AutoDiffManifold<EuclideanFunctor, 3, 3> manifold; | 
|  | EXPECT_EQ(manifold.AmbientSize(), 3); | 
|  | EXPECT_EQ(manifold.TangentSize(), 3); | 
|  |  | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(manifold.AmbientSize()); | 
|  | const Vector y = Vector::Random(manifold.AmbientSize()); | 
|  | Vector delta = Vector::Random(manifold.TangentSize()); | 
|  | Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); | 
|  |  | 
|  | manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); | 
|  | EXPECT_NEAR((x_plus_delta - x - delta).norm() / (x + delta).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct ScaledFunctor { | 
|  | explicit ScaledFunctor(const double s) : s(s) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool Plus(const T* x, const T* delta, T* x_plus_delta) const { | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | x_plus_delta[i] = x[i] + s * delta[i]; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool Minus(const T* y, const T* x, T* y_minus_x) const { | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | y_minus_x[i] = (y[i] - x[i]) / s; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const double s; | 
|  | }; | 
|  |  | 
|  | TEST(AutoDiffManifoldTest, ScaledManifold) { | 
|  | constexpr double kScale = 1.2342; | 
|  | AutoDiffManifold<ScaledFunctor, 3, 3> manifold(new ScaledFunctor(kScale)); | 
|  | EXPECT_EQ(manifold.AmbientSize(), 3); | 
|  | EXPECT_EQ(manifold.TangentSize(), 3); | 
|  |  | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(manifold.AmbientSize()); | 
|  | const Vector y = Vector::Random(manifold.AmbientSize()); | 
|  | Vector delta = Vector::Random(manifold.TangentSize()); | 
|  | Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); | 
|  |  | 
|  | manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); | 
|  | EXPECT_NEAR((x_plus_delta - x - delta * kScale).norm() / | 
|  | (x + delta * kScale).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Templated functor that implements the Plus and Minus operations on the | 
|  | // Quaternion manifold. | 
|  | struct QuaternionFunctor { | 
|  | template <typename T> | 
|  | bool Plus(const T* x, const T* delta, T* x_plus_delta) const { | 
|  | const T squared_norm_delta = | 
|  | delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; | 
|  |  | 
|  | T q_delta[4]; | 
|  | if (squared_norm_delta > T(0.0)) { | 
|  | T norm_delta = sqrt(squared_norm_delta); | 
|  | const T sin_delta_by_delta = sin(norm_delta) / norm_delta; | 
|  | q_delta[0] = cos(norm_delta); | 
|  | q_delta[1] = sin_delta_by_delta * delta[0]; | 
|  | q_delta[2] = sin_delta_by_delta * delta[1]; | 
|  | q_delta[3] = sin_delta_by_delta * delta[2]; | 
|  | } else { | 
|  | // We do not just use q_delta = [1,0,0,0] here because that is a | 
|  | // constant and when used for automatic differentiation will | 
|  | // lead to a zero derivative. Instead we take a first order | 
|  | // approximation and evaluate it at zero. | 
|  | q_delta[0] = T(1.0); | 
|  | q_delta[1] = delta[0]; | 
|  | q_delta[2] = delta[1]; | 
|  | q_delta[3] = delta[2]; | 
|  | } | 
|  |  | 
|  | QuaternionProduct(q_delta, x, x_plus_delta); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool Minus(const T* y, const T* x, T* y_minus_x) const { | 
|  | T minus_x[4] = {x[0], -x[1], -x[2], -x[3]}; | 
|  | T ambient_y_minus_x[4]; | 
|  | QuaternionProduct(y, minus_x, ambient_y_minus_x); | 
|  | T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] + | 
|  | ambient_y_minus_x[2] * ambient_y_minus_x[2] + | 
|  | ambient_y_minus_x[3] * ambient_y_minus_x[3]); | 
|  | if (u_norm > 0.0) { | 
|  | T theta = atan2(u_norm, ambient_y_minus_x[0]); | 
|  | y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm; | 
|  | y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm; | 
|  | y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm; | 
|  | } else { | 
|  | // We do not use [0,0,0] here because even though the value part is | 
|  | // a constant, the derivative part is not. | 
|  | y_minus_x[0] = ambient_y_minus_x[1]; | 
|  | y_minus_x[1] = ambient_y_minus_x[2]; | 
|  | y_minus_x[2] = ambient_y_minus_x[3]; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(AutoDiffManifoldTest, QuaternionPlusPiBy2) { | 
|  | AutoDiffManifold<QuaternionFunctor, 4, 3> manifold; | 
|  |  | 
|  | Vector x = Vector::Zero(4); | 
|  | x[0] = 1.0; | 
|  |  | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | Vector delta = Vector::Zero(3); | 
|  | delta[i] = M_PI / 2; | 
|  | Vector x_plus_delta = Vector::Zero(4); | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); | 
|  |  | 
|  | // Expect that the element corresponding to pi/2 is +/- 1. All other | 
|  | // elements should be zero. | 
|  | for (int j = 0; j < 4; ++j) { | 
|  | if (i == (j - 1)) { | 
|  | EXPECT_LT(std::abs(x_plus_delta[j]) - 1, | 
|  | std::numeric_limits<double>::epsilon()) | 
|  | << "\ndelta = " << delta.transpose() | 
|  | << "\nx_plus_delta = " << x_plus_delta.transpose() | 
|  | << "\n expected the " << j | 
|  | << "th element of x_plus_delta to be +/- 1."; | 
|  | } else { | 
|  | EXPECT_LT(std::abs(x_plus_delta[j]), | 
|  | std::numeric_limits<double>::epsilon()) | 
|  | << "\ndelta = " << delta.transpose() | 
|  | << "\nx_plus_delta = " << x_plus_delta.transpose() | 
|  | << "\n expected the " << j << "th element of x_plus_delta to be 0."; | 
|  | } | 
|  | } | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD( | 
|  | manifold, x, delta, x_plus_delta, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the expected value of Quaternion::Plus via functions in rotation.h | 
|  | // and compares it to the one computed by Quaternion::Plus. | 
|  | MATCHER_P2(QuaternionPlusIsCorrectAt, x, delta, "") { | 
|  | // This multiplication by 2 is needed because AngleAxisToQuaternion uses | 
|  | // |delta|/2 as the angle of rotation where as in the implementation of | 
|  | // Quaternion for historical reasons we use |delta|. | 
|  | const Vector two_delta = delta * 2; | 
|  | Vector delta_q(4); | 
|  | AngleAxisToQuaternion(two_delta.data(), delta_q.data()); | 
|  |  | 
|  | Vector expected(4); | 
|  | QuaternionProduct(delta_q.data(), x.data(), expected.data()); | 
|  | Vector actual(4); | 
|  | EXPECT_TRUE(arg.Plus(x.data(), delta.data(), actual.data())); | 
|  |  | 
|  | const double n = (actual - expected).norm(); | 
|  | const double d = expected.norm(); | 
|  | const double diffnorm = n / d; | 
|  | if (diffnorm > kTolerance) { | 
|  | *result_listener << "\nx: " << x.transpose() | 
|  | << "\ndelta: " << delta.transpose() | 
|  | << "\nexpected: " << expected.transpose() | 
|  | << "\nactual: " << actual.transpose() | 
|  | << "\ndiff: " << (expected - actual).transpose() | 
|  | << "\ndiffnorm : " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST(AutoDiffManifoldTest, QuaternionGenericDelta) { | 
|  | AutoDiffManifold<QuaternionFunctor, 4, 3> manifold; | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = RandomQuaternion(); | 
|  | const Vector y = RandomQuaternion(); | 
|  | Vector delta = Vector::Random(3); | 
|  | EXPECT_THAT(manifold, QuaternionPlusIsCorrectAt(x, delta)); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(AutoDiffManifoldTest, QuaternionSmallDelta) { | 
|  | AutoDiffManifold<QuaternionFunctor, 4, 3> manifold; | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = RandomQuaternion(); | 
|  | const Vector y = RandomQuaternion(); | 
|  | Vector delta = Vector::Random(3); | 
|  | delta.normalize(); | 
|  | delta *= 1e-6; | 
|  | EXPECT_THAT(manifold, QuaternionPlusIsCorrectAt(x, delta)); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(AutoDiffManifold, QuaternionDeltaJustBelowPi) { | 
|  | AutoDiffManifold<QuaternionFunctor, 4, 3> manifold; | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = RandomQuaternion(); | 
|  | const Vector y = RandomQuaternion(); | 
|  | Vector delta = Vector::Random(3); | 
|  | delta.normalize(); | 
|  | delta *= (M_PI - 1e-6); | 
|  | EXPECT_THAT(manifold, QuaternionPlusIsCorrectAt(x, delta)); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |