| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/coordinate_descent_minimizer.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <iterator> | 
 | #include <memory> | 
 | #include <numeric> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/evaluator.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/minimizer.h" | 
 | #include "ceres/parallel_for.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/parameter_block_ordering.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/solver.h" | 
 | #include "ceres/trust_region_minimizer.h" | 
 | #include "ceres/trust_region_strategy.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | using std::map; | 
 | using std::max; | 
 | using std::min; | 
 | using std::set; | 
 | using std::string; | 
 | using std::vector; | 
 |  | 
 | CoordinateDescentMinimizer::CoordinateDescentMinimizer(ContextImpl* context) | 
 |     : context_(context) { | 
 |   CHECK(context_ != nullptr); | 
 | } | 
 |  | 
 | CoordinateDescentMinimizer::~CoordinateDescentMinimizer() = default; | 
 |  | 
 | bool CoordinateDescentMinimizer::Init( | 
 |     const Program& program, | 
 |     const ProblemImpl::ParameterMap& parameter_map, | 
 |     const ParameterBlockOrdering& ordering, | 
 |     string* error) { | 
 |   parameter_blocks_.clear(); | 
 |   independent_set_offsets_.clear(); | 
 |   independent_set_offsets_.push_back(0); | 
 |  | 
 |   // Serialize the OrderedGroups into a vector of parameter block | 
 |   // offsets for parallel access. | 
 |   map<ParameterBlock*, int> parameter_block_index; | 
 |   map<int, set<double*>> group_to_elements = ordering.group_to_elements(); | 
 |   for (const auto& g_t_e : group_to_elements) { | 
 |     const auto& elements = g_t_e.second; | 
 |     for (double* parameter_block : elements) { | 
 |       parameter_blocks_.push_back(parameter_map.find(parameter_block)->second); | 
 |       parameter_block_index[parameter_blocks_.back()] = | 
 |           parameter_blocks_.size() - 1; | 
 |     } | 
 |     independent_set_offsets_.push_back(independent_set_offsets_.back() + | 
 |                                        elements.size()); | 
 |   } | 
 |  | 
 |   // The ordering does not have to contain all parameter blocks, so | 
 |   // assign zero offsets/empty independent sets to these parameter | 
 |   // blocks. | 
 |   const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks(); | 
 |   for (auto* parameter_block : parameter_blocks) { | 
 |     if (!ordering.IsMember(parameter_block->mutable_user_state())) { | 
 |       parameter_blocks_.push_back(parameter_block); | 
 |       independent_set_offsets_.push_back(independent_set_offsets_.back()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Compute the set of residual blocks that depend on each parameter | 
 |   // block. | 
 |   residual_blocks_.resize(parameter_block_index.size()); | 
 |   const vector<ResidualBlock*>& residual_blocks = program.residual_blocks(); | 
 |   for (auto* residual_block : residual_blocks) { | 
 |     const int num_parameter_blocks = residual_block->NumParameterBlocks(); | 
 |     for (int j = 0; j < num_parameter_blocks; ++j) { | 
 |       ParameterBlock* parameter_block = residual_block->parameter_blocks()[j]; | 
 |       const auto it = parameter_block_index.find(parameter_block); | 
 |       if (it != parameter_block_index.end()) { | 
 |         residual_blocks_[it->second].push_back(residual_block); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   evaluator_options_.linear_solver_type = DENSE_QR; | 
 |   evaluator_options_.num_eliminate_blocks = 0; | 
 |   evaluator_options_.num_threads = 1; | 
 |   evaluator_options_.context = context_; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void CoordinateDescentMinimizer::Minimize(const Minimizer::Options& options, | 
 |                                           double* parameters, | 
 |                                           Solver::Summary* summary) { | 
 |   // Set the state and mark all parameter blocks constant. | 
 |   for (auto* parameter_block : parameter_blocks_) { | 
 |     parameter_block->SetState(parameters + parameter_block->state_offset()); | 
 |     parameter_block->SetConstant(); | 
 |   } | 
 |  | 
 |   std::vector<std::unique_ptr<LinearSolver>> linear_solvers( | 
 |       options.num_threads); | 
 |   // std::unique_ptr<LinearSolver*[]> linear_solvers( | 
 |   //    new LinearSolver*[options.num_threads]); | 
 |  | 
 |   LinearSolver::Options linear_solver_options; | 
 |   linear_solver_options.type = DENSE_QR; | 
 |   linear_solver_options.context = context_; | 
 |  | 
 |   for (int i = 0; i < options.num_threads; ++i) { | 
 |     linear_solvers[i] = LinearSolver::Create(linear_solver_options); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < independent_set_offsets_.size() - 1; ++i) { | 
 |     const int num_problems = | 
 |         independent_set_offsets_[i + 1] - independent_set_offsets_[i]; | 
 |     // Avoid parallelization overhead call if the set is empty. | 
 |     if (num_problems == 0) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     const int num_inner_iteration_threads = | 
 |         min(options.num_threads, num_problems); | 
 |     evaluator_options_.num_threads = | 
 |         max(1, options.num_threads / num_inner_iteration_threads); | 
 |  | 
 |     // The parameter blocks in each independent set can be optimized | 
 |     // in parallel, since they do not co-occur in any residual block. | 
 |     ParallelFor( | 
 |         context_, | 
 |         independent_set_offsets_[i], | 
 |         independent_set_offsets_[i + 1], | 
 |         num_inner_iteration_threads, | 
 |         [&](int thread_id, int j) { | 
 |           ParameterBlock* parameter_block = parameter_blocks_[j]; | 
 |           const int old_index = parameter_block->index(); | 
 |           const int old_delta_offset = parameter_block->delta_offset(); | 
 |           parameter_block->SetVarying(); | 
 |           parameter_block->set_index(0); | 
 |           parameter_block->set_delta_offset(0); | 
 |  | 
 |           Program inner_program; | 
 |           inner_program.mutable_parameter_blocks()->push_back(parameter_block); | 
 |           *inner_program.mutable_residual_blocks() = residual_blocks_[j]; | 
 |  | 
 |           // TODO(sameeragarwal): Better error handling. Right now we | 
 |           // assume that this is not going to lead to problems of any | 
 |           // sort. Basically we should be checking for numerical failure | 
 |           // of some sort. | 
 |           // | 
 |           // On the other hand, if the optimization is a failure, that in | 
 |           // some ways is fine, since it won't change the parameters and | 
 |           // we are fine. | 
 |           Solver::Summary inner_summary; | 
 |           Solve(&inner_program, | 
 |                 linear_solvers[thread_id].get(), | 
 |                 parameters + parameter_block->state_offset(), | 
 |                 &inner_summary); | 
 |  | 
 |           parameter_block->set_index(old_index); | 
 |           parameter_block->set_delta_offset(old_delta_offset); | 
 |           parameter_block->SetState(parameters + | 
 |                                     parameter_block->state_offset()); | 
 |           parameter_block->SetConstant(); | 
 |         }); | 
 |   } | 
 |  | 
 |   for (auto* parameter_block : parameter_blocks_) { | 
 |     parameter_block->SetVarying(); | 
 |   } | 
 |  | 
 |   //  for (int i = 0; i < options.num_threads; ++i) { | 
 |   //  delete linear_solvers[i]; | 
 |   //} | 
 | } | 
 |  | 
 | // Solve the optimization problem for one parameter block. | 
 | void CoordinateDescentMinimizer::Solve(Program* program, | 
 |                                        LinearSolver* linear_solver, | 
 |                                        double* parameter, | 
 |                                        Solver::Summary* summary) { | 
 |   *summary = Solver::Summary(); | 
 |   summary->initial_cost = 0.0; | 
 |   summary->fixed_cost = 0.0; | 
 |   summary->final_cost = 0.0; | 
 |   string error; | 
 |  | 
 |   Minimizer::Options minimizer_options; | 
 |   minimizer_options.evaluator = | 
 |       Evaluator::Create(evaluator_options_, program, &error); | 
 |   CHECK(minimizer_options.evaluator != nullptr); | 
 |   minimizer_options.jacobian = minimizer_options.evaluator->CreateJacobian(); | 
 |   CHECK(minimizer_options.jacobian != nullptr); | 
 |  | 
 |   TrustRegionStrategy::Options trs_options; | 
 |   trs_options.linear_solver = linear_solver; | 
 |   minimizer_options.trust_region_strategy = | 
 |       TrustRegionStrategy::Create(trs_options); | 
 |   CHECK(minimizer_options.trust_region_strategy != nullptr); | 
 |   minimizer_options.is_silent = true; | 
 |  | 
 |   TrustRegionMinimizer minimizer; | 
 |   minimizer.Minimize(minimizer_options, parameter, summary); | 
 | } | 
 |  | 
 | bool CoordinateDescentMinimizer::IsOrderingValid( | 
 |     const Program& program, | 
 |     const ParameterBlockOrdering& ordering, | 
 |     string* message) { | 
 |   const map<int, set<double*>>& group_to_elements = | 
 |       ordering.group_to_elements(); | 
 |  | 
 |   // Verify that each group is an independent set | 
 |   for (const auto& g_t_e : group_to_elements) { | 
 |     if (!program.IsParameterBlockSetIndependent(g_t_e.second)) { | 
 |       *message = StringPrintf( | 
 |           "The user-provided parameter_blocks_for_inner_iterations does not " | 
 |           "form an independent set. Group Id: %d", | 
 |           g_t_e.first); | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // Find a recursive decomposition of the Hessian matrix as a set | 
 | // of independent sets of decreasing size and invert it. This | 
 | // seems to work better in practice, i.e., Cameras before | 
 | // points. | 
 | std::shared_ptr<ParameterBlockOrdering> | 
 | CoordinateDescentMinimizer::CreateOrdering(const Program& program) { | 
 |   auto ordering = std::make_shared<ParameterBlockOrdering>(); | 
 |   ComputeRecursiveIndependentSetOrdering(program, ordering.get()); | 
 |   ordering->Reverse(); | 
 |   return ordering; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |