| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2018 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/iterative_refiner.h" | 
 |  | 
 | #include <string> | 
 |  | 
 | #include "Eigen/Core" | 
 | #include "ceres/sparse_cholesky.h" | 
 | #include "ceres/sparse_matrix.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | IterativeRefiner::IterativeRefiner(const int max_num_iterations) | 
 |     : max_num_iterations_(max_num_iterations) {} | 
 |  | 
 | IterativeRefiner::~IterativeRefiner() = default; | 
 |  | 
 | void IterativeRefiner::Allocate(int num_cols) { | 
 |   residual_.resize(num_cols); | 
 |   correction_.resize(num_cols); | 
 |   lhs_x_solution_.resize(num_cols); | 
 | } | 
 |  | 
 | void IterativeRefiner::Refine(const SparseMatrix& lhs, | 
 |                               const double* rhs_ptr, | 
 |                               SparseCholesky* sparse_cholesky, | 
 |                               double* solution_ptr) { | 
 |   const int num_cols = lhs.num_cols(); | 
 |   Allocate(num_cols); | 
 |   ConstVectorRef rhs(rhs_ptr, num_cols); | 
 |   VectorRef solution(solution_ptr, num_cols); | 
 |   for (int i = 0; i < max_num_iterations_; ++i) { | 
 |     // residual = rhs - lhs * solution | 
 |     lhs_x_solution_.setZero(); | 
 |     lhs.RightMultiply(solution_ptr, lhs_x_solution_.data()); | 
 |     residual_ = rhs - lhs_x_solution_; | 
 |     // solution += lhs^-1 residual | 
 |     std::string ignored_message; | 
 |     sparse_cholesky->Solve( | 
 |         residual_.data(), correction_.data(), &ignored_message); | 
 |     solution += correction_; | 
 |   } | 
 | }; | 
 |  | 
 | }  // namespace ceres::internal |