|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/manifold.h" | 
|  |  | 
|  | #include <cmath> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  |  | 
|  | #include "Eigen/Geometry" | 
|  | #include "ceres/dynamic_numeric_diff_cost_function.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/line_manifold.h" | 
|  | #include "ceres/manifold_test_utils.h" | 
|  | #include "ceres/numeric_diff_options.h" | 
|  | #include "ceres/product_manifold.h" | 
|  | #include "ceres/rotation.h" | 
|  | #include "ceres/sphere_manifold.h" | 
|  | #include "ceres/types.h" | 
|  | #include "gmock/gmock.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | constexpr int kNumTrials = 1000; | 
|  | constexpr double kTolerance = 1e-9; | 
|  |  | 
|  | TEST(EuclideanManifold, StaticNormalFunctionTest) { | 
|  | EuclideanManifold<3> manifold; | 
|  | EXPECT_EQ(manifold.AmbientSize(), 3); | 
|  | EXPECT_EQ(manifold.TangentSize(), 3); | 
|  |  | 
|  | Vector zero_tangent = Vector::Zero(manifold.TangentSize()); | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(manifold.AmbientSize()); | 
|  | const Vector y = Vector::Random(manifold.AmbientSize()); | 
|  | Vector delta = Vector::Random(manifold.TangentSize()); | 
|  | Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); | 
|  |  | 
|  | manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); | 
|  | EXPECT_NEAR((x_plus_delta - x - delta).norm() / (x + delta).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(EuclideanManifold, DynamicNormalFunctionTest) { | 
|  | EuclideanManifold<DYNAMIC> manifold(3); | 
|  | EXPECT_EQ(manifold.AmbientSize(), 3); | 
|  | EXPECT_EQ(manifold.TangentSize(), 3); | 
|  |  | 
|  | Vector zero_tangent = Vector::Zero(manifold.TangentSize()); | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(manifold.AmbientSize()); | 
|  | const Vector y = Vector::Random(manifold.AmbientSize()); | 
|  | Vector delta = Vector::Random(manifold.TangentSize()); | 
|  | Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); | 
|  |  | 
|  | manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); | 
|  | EXPECT_NEAR((x_plus_delta - x - delta).norm() / (x + delta).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SubsetManifold, EmptyConstantParameters) { | 
|  | SubsetManifold manifold(3, {}); | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(3); | 
|  | const Vector y = Vector::Random(3); | 
|  | Vector delta = Vector::Random(3); | 
|  | Vector x_plus_delta = Vector::Zero(3); | 
|  |  | 
|  | manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); | 
|  | EXPECT_NEAR((x_plus_delta - x - delta).norm() / (x + delta).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SubsetManifold, NegativeParameterIndexDeathTest) { | 
|  | EXPECT_DEATH_IF_SUPPORTED(SubsetManifold manifold(2, {-1}), | 
|  | "greater than equal to zero"); | 
|  | } | 
|  |  | 
|  | TEST(SubsetManifold, GreaterThanSizeParameterIndexDeathTest) { | 
|  | EXPECT_DEATH_IF_SUPPORTED(SubsetManifold manifold(2, {2}), | 
|  | "less than the size"); | 
|  | } | 
|  |  | 
|  | TEST(SubsetManifold, DuplicateParametersDeathTest) { | 
|  | EXPECT_DEATH_IF_SUPPORTED(SubsetManifold manifold(2, {1, 1}), "duplicates"); | 
|  | } | 
|  |  | 
|  | TEST(SubsetManifold, NormalFunctionTest) { | 
|  | const int kAmbientSize = 4; | 
|  | const int kTangentSize = 3; | 
|  |  | 
|  | for (int i = 0; i < kAmbientSize; ++i) { | 
|  | SubsetManifold manifold_with_ith_parameter_constant(kAmbientSize, {i}); | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(kAmbientSize); | 
|  | Vector y = Vector::Random(kAmbientSize); | 
|  | // x and y must have the same i^th coordinate to be on the manifold. | 
|  | y[i] = x[i]; | 
|  | Vector delta = Vector::Random(kTangentSize); | 
|  | Vector x_plus_delta = Vector::Zero(kAmbientSize); | 
|  |  | 
|  | x_plus_delta.setZero(); | 
|  | manifold_with_ith_parameter_constant.Plus( | 
|  | x.data(), delta.data(), x_plus_delta.data()); | 
|  | int k = 0; | 
|  | for (int j = 0; j < kAmbientSize; ++j) { | 
|  | if (j == i) { | 
|  | EXPECT_EQ(x_plus_delta[j], x[j]); | 
|  | } else { | 
|  | EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD( | 
|  | manifold_with_ith_parameter_constant, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, Size2) { | 
|  | SubsetManifold manifold1(5, {2}); | 
|  | SubsetManifold manifold2(3, {0, 1}); | 
|  | ProductManifold<SubsetManifold, SubsetManifold> manifold(manifold1, | 
|  | manifold2); | 
|  |  | 
|  | EXPECT_EQ(manifold.AmbientSize(), | 
|  | manifold1.AmbientSize() + manifold2.AmbientSize()); | 
|  | EXPECT_EQ(manifold.TangentSize(), | 
|  | manifold1.TangentSize() + manifold2.TangentSize()); | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, Size3) { | 
|  | SubsetManifold manifold1(5, {2}); | 
|  | SubsetManifold manifold2(3, {0, 1}); | 
|  | SubsetManifold manifold3(4, {1}); | 
|  |  | 
|  | ProductManifold<SubsetManifold, SubsetManifold, SubsetManifold> manifold( | 
|  | manifold1, manifold2, manifold3); | 
|  |  | 
|  | EXPECT_EQ(manifold.AmbientSize(), | 
|  | manifold1.AmbientSize() + manifold2.AmbientSize() + | 
|  | manifold3.AmbientSize()); | 
|  | EXPECT_EQ(manifold.TangentSize(), | 
|  | manifold1.TangentSize() + manifold2.TangentSize() + | 
|  | manifold3.TangentSize()); | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, Size4) { | 
|  | SubsetManifold manifold1(5, {2}); | 
|  | SubsetManifold manifold2(3, {0, 1}); | 
|  | SubsetManifold manifold3(4, {1}); | 
|  | SubsetManifold manifold4(2, {0}); | 
|  |  | 
|  | ProductManifold<SubsetManifold, | 
|  | SubsetManifold, | 
|  | SubsetManifold, | 
|  | SubsetManifold> | 
|  | manifold(manifold1, manifold2, manifold3, manifold4); | 
|  |  | 
|  | EXPECT_EQ(manifold.AmbientSize(), | 
|  | manifold1.AmbientSize() + manifold2.AmbientSize() + | 
|  | manifold3.AmbientSize() + manifold4.AmbientSize()); | 
|  | EXPECT_EQ(manifold.TangentSize(), | 
|  | manifold1.TangentSize() + manifold2.TangentSize() + | 
|  | manifold3.TangentSize() + manifold4.TangentSize()); | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, NormalFunctionTest) { | 
|  | SubsetManifold manifold1(5, {2}); | 
|  | SubsetManifold manifold2(3, {0, 1}); | 
|  | SubsetManifold manifold3(4, {1}); | 
|  | SubsetManifold manifold4(2, {0}); | 
|  |  | 
|  | ProductManifold<SubsetManifold, | 
|  | SubsetManifold, | 
|  | SubsetManifold, | 
|  | SubsetManifold> | 
|  | manifold(manifold1, manifold2, manifold3, manifold4); | 
|  |  | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(manifold.AmbientSize()); | 
|  | Vector delta = Vector::Random(manifold.TangentSize()); | 
|  | Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); | 
|  | Vector x_plus_delta_expected = Vector::Zero(manifold.AmbientSize()); | 
|  |  | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); | 
|  |  | 
|  | int ambient_cursor = 0; | 
|  | int tangent_cursor = 0; | 
|  |  | 
|  | EXPECT_TRUE(manifold1.Plus(&x[ambient_cursor], | 
|  | &delta[tangent_cursor], | 
|  | &x_plus_delta_expected[ambient_cursor])); | 
|  | ambient_cursor += manifold1.AmbientSize(); | 
|  | tangent_cursor += manifold1.TangentSize(); | 
|  |  | 
|  | EXPECT_TRUE(manifold2.Plus(&x[ambient_cursor], | 
|  | &delta[tangent_cursor], | 
|  | &x_plus_delta_expected[ambient_cursor])); | 
|  | ambient_cursor += manifold2.AmbientSize(); | 
|  | tangent_cursor += manifold2.TangentSize(); | 
|  |  | 
|  | EXPECT_TRUE(manifold3.Plus(&x[ambient_cursor], | 
|  | &delta[tangent_cursor], | 
|  | &x_plus_delta_expected[ambient_cursor])); | 
|  | ambient_cursor += manifold3.AmbientSize(); | 
|  | tangent_cursor += manifold3.TangentSize(); | 
|  |  | 
|  | EXPECT_TRUE(manifold4.Plus(&x[ambient_cursor], | 
|  | &delta[tangent_cursor], | 
|  | &x_plus_delta_expected[ambient_cursor])); | 
|  | ambient_cursor += manifold4.AmbientSize(); | 
|  | tangent_cursor += manifold4.TangentSize(); | 
|  |  | 
|  | for (int i = 0; i < x.size(); ++i) { | 
|  | EXPECT_EQ(x_plus_delta[i], x_plus_delta_expected[i]); | 
|  | } | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD( | 
|  | manifold, x, delta, x_plus_delta, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, ZeroTangentSizeAndEuclidean) { | 
|  | SubsetManifold subset_manifold(1, {0}); | 
|  | EuclideanManifold<2> euclidean_manifold; | 
|  | ProductManifold<SubsetManifold, EuclideanManifold<2>> manifold( | 
|  | subset_manifold, euclidean_manifold); | 
|  | EXPECT_EQ(manifold.AmbientSize(), 3); | 
|  | EXPECT_EQ(manifold.TangentSize(), 2); | 
|  |  | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(3); | 
|  | Vector y = Vector::Random(3); | 
|  | y[0] = x[0]; | 
|  | Vector delta = Vector::Random(2); | 
|  | Vector x_plus_delta = Vector::Zero(3); | 
|  |  | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); | 
|  |  | 
|  | EXPECT_EQ(x_plus_delta[0], x[0]); | 
|  | EXPECT_EQ(x_plus_delta[1], x[1] + delta[0]); | 
|  | EXPECT_EQ(x_plus_delta[2], x[2] + delta[1]); | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, EuclideanAndZeroTangentSize) { | 
|  | SubsetManifold subset_manifold(1, {0}); | 
|  | EuclideanManifold<2> euclidean_manifold; | 
|  | ProductManifold<EuclideanManifold<2>, SubsetManifold> manifold( | 
|  | euclidean_manifold, subset_manifold); | 
|  | EXPECT_EQ(manifold.AmbientSize(), 3); | 
|  | EXPECT_EQ(manifold.TangentSize(), 2); | 
|  |  | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(3); | 
|  | Vector y = Vector::Random(3); | 
|  | y[2] = x[2]; | 
|  | Vector delta = Vector::Random(2); | 
|  | Vector x_plus_delta = Vector::Zero(3); | 
|  |  | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); | 
|  | EXPECT_EQ(x_plus_delta[0], x[0] + delta[0]); | 
|  | EXPECT_EQ(x_plus_delta[1], x[1] + delta[1]); | 
|  | EXPECT_EQ(x_plus_delta[2], x[2]); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct CopyableManifold : ceres::Manifold { | 
|  | CopyableManifold() = default; | 
|  | CopyableManifold(const CopyableManifold&) = default; | 
|  | // Do not care about copy-assignment | 
|  | CopyableManifold& operator=(const CopyableManifold&) = delete; | 
|  | // Not moveable | 
|  | CopyableManifold(CopyableManifold&&) = delete; | 
|  | CopyableManifold& operator=(CopyableManifold&&) = delete; | 
|  |  | 
|  | int AmbientSize() const override { return 3; } | 
|  | int TangentSize() const override { return 2; } | 
|  |  | 
|  | bool Plus(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PlusJacobian(const double* x, double* jacobian) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RightMultiplyByPlusJacobian(const double* x, | 
|  | const int num_rows, | 
|  | const double* ambient_matrix, | 
|  | double* tangent_matrix) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Minus(const double* y, | 
|  | const double* x, | 
|  | double* y_minus_x) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MinusJacobian(const double* x, double* jacobian) const override { | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct MoveableManifold : ceres::Manifold { | 
|  | MoveableManifold() = default; | 
|  | MoveableManifold(MoveableManifold&&) = default; | 
|  | // Do not care about move-assignment | 
|  | MoveableManifold& operator=(MoveableManifold&&) = delete; | 
|  | // Not copyable | 
|  | MoveableManifold(const MoveableManifold&) = delete; | 
|  | MoveableManifold& operator=(const MoveableManifold&) = delete; | 
|  |  | 
|  | int AmbientSize() const override { return 3; } | 
|  | int TangentSize() const override { return 2; } | 
|  |  | 
|  | bool Plus(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PlusJacobian(const double* x, double* jacobian) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RightMultiplyByPlusJacobian(const double* x, | 
|  | const int num_rows, | 
|  | const double* ambient_matrix, | 
|  | double* tangent_matrix) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Minus(const double* y, | 
|  | const double* x, | 
|  | double* y_minus_x) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MinusJacobian(const double* x, double* jacobian) const override { | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(ProductManifold, CopyableOnly) { | 
|  | ProductManifold<CopyableManifold, EuclideanManifold<3>> manifold1{ | 
|  | CopyableManifold{}, EuclideanManifold<3>{}}; | 
|  |  | 
|  | CopyableManifold inner2; | 
|  | ProductManifold<CopyableManifold, EuclideanManifold<3>> manifold2{ | 
|  | inner2, EuclideanManifold<3>{}}; | 
|  |  | 
|  | EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); | 
|  | EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, MoveableOnly) { | 
|  | ProductManifold<MoveableManifold, EuclideanManifold<3>> manifold1{ | 
|  | MoveableManifold{}, EuclideanManifold<3>{}}; | 
|  |  | 
|  | MoveableManifold inner2; | 
|  | ProductManifold<MoveableManifold, EuclideanManifold<3>> manifold2{ | 
|  | std::move(inner2), EuclideanManifold<3>{}}; | 
|  |  | 
|  | EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); | 
|  | EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, CopyableOrMoveable) { | 
|  | const CopyableManifold inner12{}; | 
|  | ProductManifold<MoveableManifold, CopyableManifold> manifold1{ | 
|  | MoveableManifold{}, inner12}; | 
|  |  | 
|  | MoveableManifold inner21; | 
|  | CopyableManifold inner22; | 
|  | ProductManifold<MoveableManifold, CopyableManifold> manifold2{ | 
|  | std::move(inner21), inner22}; | 
|  |  | 
|  | EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); | 
|  | EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); | 
|  | } | 
|  |  | 
|  | struct NonDefaultConstructibleManifold : ceres::Manifold { | 
|  | NonDefaultConstructibleManifold(int, int) {} | 
|  | int AmbientSize() const override { return 4; } | 
|  | int TangentSize() const override { return 3; } | 
|  |  | 
|  | bool Plus(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PlusJacobian(const double* x, double* jacobian) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RightMultiplyByPlusJacobian(const double* x, | 
|  | const int num_rows, | 
|  | const double* ambient_matrix, | 
|  | double* tangent_matrix) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Minus(const double* y, | 
|  | const double* x, | 
|  | double* y_minus_x) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MinusJacobian(const double* x, double* jacobian) const override { | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(ProductManifold, NonDefaultConstructible) { | 
|  | ProductManifold<NonDefaultConstructibleManifold, QuaternionManifold> | 
|  | manifold1{NonDefaultConstructibleManifold{1, 2}, QuaternionManifold{}}; | 
|  | ProductManifold<QuaternionManifold, NonDefaultConstructibleManifold> | 
|  | manifold2{QuaternionManifold{}, NonDefaultConstructibleManifold{1, 2}}; | 
|  |  | 
|  | EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); | 
|  | EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, DefaultConstructible) { | 
|  | ProductManifold<EuclideanManifold<3>, SphereManifold<4>> manifold1; | 
|  | ProductManifold<SphereManifold<4>, EuclideanManifold<3>> manifold2; | 
|  |  | 
|  | EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); | 
|  | EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); | 
|  | } | 
|  |  | 
|  | TEST(ProductManifold, Pointers) { | 
|  | auto p = std::make_unique<QuaternionManifold>(); | 
|  | auto q = std::make_shared<EuclideanManifold<3>>(); | 
|  |  | 
|  | ProductManifold<std::unique_ptr<Manifold>, | 
|  | EuclideanManifold<3>, | 
|  | std::shared_ptr<EuclideanManifold<3>>> | 
|  | manifold1{ | 
|  | std::make_unique<QuaternionManifold>(), EuclideanManifold<3>{}, q}; | 
|  | ProductManifold<QuaternionManifold*, | 
|  | EuclideanManifold<3>, | 
|  | std::shared_ptr<EuclideanManifold<3>>> | 
|  | manifold2{p.get(), EuclideanManifold<3>{}, q}; | 
|  |  | 
|  | EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); | 
|  | EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); | 
|  | } | 
|  |  | 
|  | TEST(QuaternionManifold, PlusPiBy2) { | 
|  | QuaternionManifold manifold; | 
|  | Vector x = Vector::Zero(4); | 
|  | x[0] = 1.0; | 
|  |  | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | Vector delta = Vector::Zero(3); | 
|  | delta[i] = M_PI / 2; | 
|  | Vector x_plus_delta = Vector::Zero(4); | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); | 
|  |  | 
|  | // Expect that the element corresponding to pi/2 is +/- 1. All other | 
|  | // elements should be zero. | 
|  | for (int j = 0; j < 4; ++j) { | 
|  | if (i == (j - 1)) { | 
|  | EXPECT_LT(std::abs(x_plus_delta[j]) - 1, | 
|  | std::numeric_limits<double>::epsilon()) | 
|  | << "\ndelta = " << delta.transpose() | 
|  | << "\nx_plus_delta = " << x_plus_delta.transpose() | 
|  | << "\n expected the " << j | 
|  | << "th element of x_plus_delta to be +/- 1."; | 
|  | } else { | 
|  | EXPECT_LT(std::abs(x_plus_delta[j]), | 
|  | std::numeric_limits<double>::epsilon()) | 
|  | << "\ndelta = " << delta.transpose() | 
|  | << "\nx_plus_delta = " << x_plus_delta.transpose() | 
|  | << "\n expected the " << j << "th element of x_plus_delta to be 0."; | 
|  | } | 
|  | } | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD( | 
|  | manifold, x, delta, x_plus_delta, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the expected value of QuaternionManifold::Plus via functions in | 
|  | // rotation.h and compares it to the one computed by QuaternionManifold::Plus. | 
|  | MATCHER_P2(QuaternionManifoldPlusIsCorrectAt, x, delta, "") { | 
|  | // This multiplication by 2 is needed because AngleAxisToQuaternion uses | 
|  | // |delta|/2 as the angle of rotation where as in the implementation of | 
|  | // QuaternionManifold for historical reasons we use |delta|. | 
|  | const Vector two_delta = delta * 2; | 
|  | Vector delta_q(4); | 
|  | AngleAxisToQuaternion(two_delta.data(), delta_q.data()); | 
|  |  | 
|  | Vector expected(4); | 
|  | QuaternionProduct(delta_q.data(), x.data(), expected.data()); | 
|  | Vector actual(4); | 
|  | EXPECT_TRUE(arg.Plus(x.data(), delta.data(), actual.data())); | 
|  |  | 
|  | const double n = (actual - expected).norm(); | 
|  | const double d = expected.norm(); | 
|  | const double diffnorm = n / d; | 
|  | if (diffnorm > kTolerance) { | 
|  | *result_listener << "\nx: " << x.transpose() | 
|  | << "\ndelta: " << delta.transpose() | 
|  | << "\nexpected: " << expected.transpose() | 
|  | << "\nactual: " << actual.transpose() | 
|  | << "\ndiff: " << (expected - actual).transpose() | 
|  | << "\ndiffnorm : " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static Vector RandomQuaternion() { | 
|  | Vector x = Vector::Random(4); | 
|  | x.normalize(); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | TEST(QuaternionManifold, GenericDelta) { | 
|  | QuaternionManifold manifold; | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = RandomQuaternion(); | 
|  | const Vector y = RandomQuaternion(); | 
|  | Vector delta = Vector::Random(3); | 
|  | EXPECT_THAT(manifold, QuaternionManifoldPlusIsCorrectAt(x, delta)); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(QuaternionManifold, SmallDelta) { | 
|  | QuaternionManifold manifold; | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = RandomQuaternion(); | 
|  | const Vector y = RandomQuaternion(); | 
|  | Vector delta = Vector::Random(3); | 
|  | delta.normalize(); | 
|  | delta *= 1e-6; | 
|  | EXPECT_THAT(manifold, QuaternionManifoldPlusIsCorrectAt(x, delta)); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(QuaternionManifold, DeltaJustBelowPi) { | 
|  | QuaternionManifold manifold; | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = RandomQuaternion(); | 
|  | const Vector y = RandomQuaternion(); | 
|  | Vector delta = Vector::Random(3); | 
|  | delta.normalize(); | 
|  | delta *= (M_PI - 1e-6); | 
|  | EXPECT_THAT(manifold, QuaternionManifoldPlusIsCorrectAt(x, delta)); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the expected value of EigenQuaternionManifold::Plus using Eigen and | 
|  | // compares it to the one computed by QuaternionManifold::Plus. | 
|  | MATCHER_P2(EigenQuaternionManifoldPlusIsCorrectAt, x, delta, "") { | 
|  | // This multiplication by 2 is needed because AngleAxisToQuaternion uses | 
|  | // |delta|/2 as the angle of rotation where as in the implementation of | 
|  | // Quaternion for historical reasons we use |delta|. | 
|  | const Vector two_delta = delta * 2; | 
|  | Vector delta_q(4); | 
|  | AngleAxisToQuaternion(two_delta.data(), delta_q.data()); | 
|  | Eigen::Quaterniond delta_eigen_q( | 
|  | delta_q[0], delta_q[1], delta_q[2], delta_q[3]); | 
|  |  | 
|  | Eigen::Map<const Eigen::Quaterniond> x_eigen_q(x.data()); | 
|  |  | 
|  | Eigen::Quaterniond expected = delta_eigen_q * x_eigen_q; | 
|  | double actual[4]; | 
|  | EXPECT_TRUE(arg.Plus(x.data(), delta.data(), actual)); | 
|  | Eigen::Map<Eigen::Quaterniond> actual_eigen_q(actual); | 
|  |  | 
|  | const double n = (actual_eigen_q.coeffs() - expected.coeffs()).norm(); | 
|  | const double d = expected.norm(); | 
|  | const double diffnorm = n / d; | 
|  | if (diffnorm > kTolerance) { | 
|  | *result_listener | 
|  | << "\nx: " << x.transpose() << "\ndelta: " << delta.transpose() | 
|  | << "\nexpected: " << expected.coeffs().transpose() | 
|  | << "\nactual: " << actual_eigen_q.coeffs().transpose() << "\ndiff: " | 
|  | << (expected.coeffs() - actual_eigen_q.coeffs()).transpose() | 
|  | << "\ndiffnorm : " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST(EigenQuaternionManifold, GenericDelta) { | 
|  | EigenQuaternionManifold manifold; | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = RandomQuaternion(); | 
|  | const Vector y = RandomQuaternion(); | 
|  | Vector delta = Vector::Random(3); | 
|  | EXPECT_THAT(manifold, EigenQuaternionManifoldPlusIsCorrectAt(x, delta)); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(EigenQuaternionManifold, SmallDelta) { | 
|  | EigenQuaternionManifold manifold; | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = RandomQuaternion(); | 
|  | const Vector y = RandomQuaternion(); | 
|  | Vector delta = Vector::Random(3); | 
|  | delta.normalize(); | 
|  | delta *= 1e-6; | 
|  | EXPECT_THAT(manifold, EigenQuaternionManifoldPlusIsCorrectAt(x, delta)); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(EigenQuaternionManifold, DeltaJustBelowPi) { | 
|  | EigenQuaternionManifold manifold; | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = RandomQuaternion(); | 
|  | const Vector y = RandomQuaternion(); | 
|  | Vector delta = Vector::Random(3); | 
|  | delta.normalize(); | 
|  | delta *= (M_PI - 1e-6); | 
|  | EXPECT_THAT(manifold, EigenQuaternionManifoldPlusIsCorrectAt(x, delta)); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | using Eigen::Vector2d; | 
|  | using Eigen::Vector3d; | 
|  | using Vector6d = Eigen::Matrix<double, 6, 1>; | 
|  | using Eigen::Vector4d; | 
|  | using Vector8d = Eigen::Matrix<double, 8, 1>; | 
|  |  | 
|  | TEST(SphereManifold, ZeroTest) { | 
|  | Vector4d x{0.0, 0.0, 0.0, 1.0}; | 
|  | Vector3d delta = Vector3d::Zero(); | 
|  | Vector4d y = Vector4d::Zero(); | 
|  |  | 
|  | SphereManifold<4> manifold; | 
|  | manifold.Plus(x.data(), delta.data(), y.data()); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  |  | 
|  | TEST(SphereManifold, NearZeroTest1) { | 
|  | Vector4d x{1e-5, 1e-5, 1e-5, 1.0}; | 
|  | x.normalize(); | 
|  | Vector3d delta{0.0, 1.0, 0.0}; | 
|  | Vector4d y = Vector4d::Zero(); | 
|  |  | 
|  | SphereManifold<4> manifold; | 
|  | manifold.Plus(x.data(), delta.data(), y.data()); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  |  | 
|  | TEST(SphereManifold, NearZeroTest2) { | 
|  | Vector4d x{0.001, 0.0, 0.0, 0.0}; | 
|  | Vector3d delta{0.0, 1.0, 0.0}; | 
|  | Vector4d y = Vector4d::Zero(); | 
|  | SphereManifold<4> manifold; | 
|  | manifold.Plus(x.data(), delta.data(), y.data()); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  |  | 
|  | TEST(SphereManifold, Plus) { | 
|  | Eigen::Vector3d x{0.0, 0.0, 1.0}; | 
|  | SphereManifold<3> manifold; | 
|  |  | 
|  | { | 
|  | Eigen::Vector2d delta{M_PI, 0.0}; | 
|  | Eigen::Vector3d y = Eigen::Vector3d::Zero(); | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | const Eigen::Vector3d gtY = Eigen::Vector3d::UnitX(); | 
|  | EXPECT_LT((y - gtY).norm(), kTolerance); | 
|  | } | 
|  |  | 
|  | { | 
|  | Eigen::Vector2d delta{0.0, M_PI}; | 
|  | Eigen::Vector3d y = Eigen::Vector3d::Zero(); | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | const Eigen::Vector3d gtY = Eigen::Vector3d::UnitY(); | 
|  | EXPECT_LT((y - gtY).norm(), kTolerance); | 
|  | } | 
|  |  | 
|  | { | 
|  | Eigen::Vector2d delta = Eigen::Vector2d(1, 1).normalized() * M_PI; | 
|  | Eigen::Vector3d y = Eigen::Vector3d::Zero(); | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | const Eigen::Vector3d gtY(std::sqrt(2.0) / 2.0, std::sqrt(2.0) / 2.0, 0.0); | 
|  | EXPECT_LT((y - gtY).norm(), kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SphereManifold, DeathTests) { | 
|  | EXPECT_DEATH_IF_SUPPORTED(SphereManifold<Eigen::Dynamic> x(1), "size"); | 
|  | } | 
|  |  | 
|  | TEST(SphereManifold, NormalFunctionTest) { | 
|  | SphereManifold<4> manifold; | 
|  | EXPECT_EQ(manifold.AmbientSize(), 4); | 
|  | EXPECT_EQ(manifold.TangentSize(), 3); | 
|  |  | 
|  | Vector zero_tangent = Vector::Zero(manifold.TangentSize()); | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(manifold.AmbientSize()); | 
|  | Vector y = Vector::Random(manifold.AmbientSize()); | 
|  | Vector delta = Vector::Random(manifold.TangentSize()); | 
|  |  | 
|  | if (x.norm() == 0.0 || y.norm() == 0.0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // X and y need to have the same length. | 
|  | y *= x.norm() / y.norm(); | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SphereManifold, NormalFunctionTestDynamic) { | 
|  | SphereManifold<ceres::DYNAMIC> manifold(5); | 
|  | EXPECT_EQ(manifold.AmbientSize(), 5); | 
|  | EXPECT_EQ(manifold.TangentSize(), 4); | 
|  |  | 
|  | Vector zero_tangent = Vector::Zero(manifold.TangentSize()); | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | const Vector x = Vector::Random(manifold.AmbientSize()); | 
|  | Vector y = Vector::Random(manifold.AmbientSize()); | 
|  | Vector delta = Vector::Random(manifold.TangentSize()); | 
|  |  | 
|  | if (x.norm() == 0.0 || y.norm() == 0.0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // X and y need to have the same length. | 
|  | y *= x.norm() / y.norm(); | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(LineManifold, ZeroTest3D) { | 
|  | const Vector6d x = Vector6d::Unit(5); | 
|  | const Vector4d delta = Vector4d::Zero(); | 
|  | Vector6d y = Vector6d::Zero(); | 
|  |  | 
|  | LineManifold<3> manifold; | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  |  | 
|  | TEST(LineManifold, ZeroTest4D) { | 
|  | const Vector8d x = Vector8d::Unit(7); | 
|  | const Vector6d delta = Vector6d::Zero(); | 
|  | Vector8d y = Vector8d::Zero(); | 
|  |  | 
|  | LineManifold<4> manifold; | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  |  | 
|  | TEST(LineManifold, ZeroOriginPointTest3D) { | 
|  | const Vector6d x = Vector6d::Unit(5); | 
|  | Vector4d delta; | 
|  | delta << 0.0, 0.0, 1.0, 2.0; | 
|  | Vector6d y = Vector6d::Zero(); | 
|  |  | 
|  | LineManifold<3> manifold; | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  |  | 
|  | TEST(LineManifold, ZeroOriginPointTest4D) { | 
|  | const Vector8d x = Vector8d::Unit(7); | 
|  | Vector6d delta; | 
|  | delta << 0.0, 0.0, 0.0, 1.0, 2.0, 3.0; | 
|  | Vector8d y = Vector8d::Zero(); | 
|  |  | 
|  | LineManifold<4> manifold; | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  |  | 
|  | TEST(LineManifold, ZeroDirTest3D) { | 
|  | Vector6d x = Vector6d::Unit(5); | 
|  | Vector4d delta; | 
|  | delta << 3.0, 2.0, 0.0, 0.0; | 
|  | Vector6d y = Vector6d::Zero(); | 
|  |  | 
|  | LineManifold<3> manifold; | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  |  | 
|  | TEST(LineManifold, ZeroDirTest4D) { | 
|  | Vector8d x = Vector8d::Unit(7); | 
|  | Vector6d delta; | 
|  | delta << 3.0, 2.0, 1.0, 0.0, 0.0, 0.0; | 
|  | Vector8d y = Vector8d::Zero(); | 
|  |  | 
|  | LineManifold<4> manifold; | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  |  | 
|  | TEST(LineManifold, Plus) { | 
|  | Vector6d x = Vector6d::Unit(5); | 
|  | LineManifold<3> manifold; | 
|  |  | 
|  | { | 
|  | Vector4d delta{0.0, 4.0, M_PI, 0.0}; | 
|  | Vector6d y = Vector6d::Random(); | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | Vector6d gtY; | 
|  | gtY << 2.0 * Vector3d::UnitY(), Vector3d::UnitX(); | 
|  | EXPECT_LT((y - gtY).norm(), kTolerance); | 
|  | } | 
|  |  | 
|  | { | 
|  | Vector4d delta{6.0, 0.0, 0.0, M_PI}; | 
|  | Vector6d y = Vector6d::Zero(); | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | Vector6d gtY; | 
|  | gtY << 3.0 * Vector3d::UnitX(), Vector3d::UnitY(); | 
|  | EXPECT_LT((y - gtY).norm(), kTolerance); | 
|  | } | 
|  |  | 
|  | { | 
|  | Vector4d delta; | 
|  | delta << Vector2d(2.0, 4.0), Vector2d(1, 1).normalized() * M_PI; | 
|  | Vector6d y = Vector6d::Zero(); | 
|  | EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); | 
|  | Vector6d gtY; | 
|  | gtY << Vector3d(1.0, 2.0, 0.0), | 
|  | Vector3d(std::sqrt(2.0) / 2.0, std::sqrt(2.0) / 2.0, 0.0); | 
|  | EXPECT_LT((y - gtY).norm(), kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(LineManifold, NormalFunctionTest) { | 
|  | LineManifold<3> manifold; | 
|  | EXPECT_EQ(manifold.AmbientSize(), 6); | 
|  | EXPECT_EQ(manifold.TangentSize(), 4); | 
|  |  | 
|  | Vector zero_tangent = Vector::Zero(manifold.TangentSize()); | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | Vector x = Vector::Random(manifold.AmbientSize()); | 
|  | Vector y = Vector::Random(manifold.AmbientSize()); | 
|  | Vector delta = Vector::Random(manifold.TangentSize()); | 
|  |  | 
|  | if (x.tail<3>().norm() == 0.0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | x.tail<3>().normalize(); | 
|  | manifold.Plus(x.data(), delta.data(), y.data()); | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(LineManifold, NormalFunctionTestDynamic) { | 
|  | LineManifold<ceres::DYNAMIC> manifold(3); | 
|  | EXPECT_EQ(manifold.AmbientSize(), 6); | 
|  | EXPECT_EQ(manifold.TangentSize(), 4); | 
|  |  | 
|  | Vector zero_tangent = Vector::Zero(manifold.TangentSize()); | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | Vector x = Vector::Random(manifold.AmbientSize()); | 
|  | Vector y = Vector::Random(manifold.AmbientSize()); | 
|  | Vector delta = Vector::Random(manifold.TangentSize()); | 
|  |  | 
|  | if (x.tail<3>().norm() == 0.0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | x.tail<3>().normalize(); | 
|  | manifold.Plus(x.data(), delta.data(), y.data()); | 
|  |  | 
|  | EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |