| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/schur_complement_solver.h" | 
 |  | 
 | #include <cstddef> | 
 | #include <memory> | 
 |  | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/casts.h" | 
 | #include "ceres/context_impl.h" | 
 | #include "ceres/detect_structure.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | class SchurComplementSolverTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUpFromProblemId(int problem_id) { | 
 |     std::unique_ptr<LinearLeastSquaresProblem> problem = | 
 |         CreateLinearLeastSquaresProblemFromId(problem_id); | 
 |  | 
 |     CHECK(problem != nullptr); | 
 |     A.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); | 
 |     b = std::move(problem->b); | 
 |     D = std::move(problem->D); | 
 |  | 
 |     num_cols = A->num_cols(); | 
 |     num_rows = A->num_rows(); | 
 |     num_eliminate_blocks = problem->num_eliminate_blocks; | 
 |  | 
 |     x.resize(num_cols); | 
 |     sol.resize(num_cols); | 
 |     sol_d.resize(num_cols); | 
 |  | 
 |     LinearSolver::Options options; | 
 |     options.type = DENSE_QR; | 
 |     ContextImpl context; | 
 |     options.context = &context; | 
 |  | 
 |     std::unique_ptr<LinearSolver> qr(LinearSolver::Create(options)); | 
 |  | 
 |     TripletSparseMatrix triplet_A( | 
 |         A->num_rows(), A->num_cols(), A->num_nonzeros()); | 
 |     A->ToTripletSparseMatrix(&triplet_A); | 
 |  | 
 |     // Gold standard solutions using dense QR factorization. | 
 |     DenseSparseMatrix dense_A(triplet_A); | 
 |     qr->Solve(&dense_A, b.get(), LinearSolver::PerSolveOptions(), sol.data()); | 
 |  | 
 |     // Gold standard solution with appended diagonal. | 
 |     LinearSolver::PerSolveOptions per_solve_options; | 
 |     per_solve_options.D = D.get(); | 
 |     qr->Solve(&dense_A, b.get(), per_solve_options, sol_d.data()); | 
 |   } | 
 |  | 
 |   void ComputeAndCompareSolutions( | 
 |       int problem_id, | 
 |       bool regularization, | 
 |       ceres::LinearSolverType linear_solver_type, | 
 |       ceres::DenseLinearAlgebraLibraryType dense_linear_algebra_library_type, | 
 |       ceres::SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
 |       bool use_postordering) { | 
 |     SetUpFromProblemId(problem_id); | 
 |     LinearSolver::Options options; | 
 |     options.elimination_groups.push_back(num_eliminate_blocks); | 
 |     options.elimination_groups.push_back(A->block_structure()->cols.size() - | 
 |                                          num_eliminate_blocks); | 
 |     options.type = linear_solver_type; | 
 |     options.dense_linear_algebra_library_type = | 
 |         dense_linear_algebra_library_type; | 
 |     options.sparse_linear_algebra_library_type = | 
 |         sparse_linear_algebra_library_type; | 
 |     options.use_postordering = use_postordering; | 
 |     ContextImpl context; | 
 |     options.context = &context; | 
 |     DetectStructure(*A->block_structure(), | 
 |                     num_eliminate_blocks, | 
 |                     &options.row_block_size, | 
 |                     &options.e_block_size, | 
 |                     &options.f_block_size); | 
 |  | 
 |     std::unique_ptr<LinearSolver> solver(LinearSolver::Create(options)); | 
 |  | 
 |     LinearSolver::PerSolveOptions per_solve_options; | 
 |     LinearSolver::Summary summary; | 
 |     if (regularization) { | 
 |       per_solve_options.D = D.get(); | 
 |     } | 
 |  | 
 |     summary = solver->Solve(A.get(), b.get(), per_solve_options, x.data()); | 
 |     EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_SUCCESS); | 
 |  | 
 |     if (regularization) { | 
 |       ASSERT_NEAR((sol_d - x).norm() / num_cols, 0, 1e-10) | 
 |           << "Regularized Expected solution: " << sol_d.transpose() | 
 |           << " Actual solution: " << x.transpose(); | 
 |     } else { | 
 |       ASSERT_NEAR((sol - x).norm() / num_cols, 0, 1e-10) | 
 |           << "Unregularized Expected solution: " << sol.transpose() | 
 |           << " Actual solution: " << x.transpose(); | 
 |     } | 
 |   } | 
 |  | 
 |   int num_rows; | 
 |   int num_cols; | 
 |   int num_eliminate_blocks; | 
 |  | 
 |   std::unique_ptr<BlockSparseMatrix> A; | 
 |   std::unique_ptr<double[]> b; | 
 |   std::unique_ptr<double[]> D; | 
 |   Vector x; | 
 |   Vector sol; | 
 |   Vector sol_d; | 
 | }; | 
 |  | 
 | // TODO(sameeragarwal): Refactor these using value parameterized tests. | 
 | // TODO(sameeragarwal): More extensive tests using random matrices. | 
 | TEST_F(SchurComplementSolverTest, DenseSchurWithEigenSmallProblem) { | 
 |   ComputeAndCompareSolutions(2, false, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true); | 
 |   ComputeAndCompareSolutions(2, true, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true); | 
 | } | 
 |  | 
 | TEST_F(SchurComplementSolverTest, DenseSchurWithEigenLargeProblem) { | 
 |   ComputeAndCompareSolutions(3, false, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true); | 
 |   ComputeAndCompareSolutions(3, true, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true); | 
 | } | 
 |  | 
 | TEST_F(SchurComplementSolverTest, DenseSchurWithEigenVaryingFBlockSize) { | 
 |   ComputeAndCompareSolutions(4, true, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true); | 
 | } | 
 |  | 
 | #ifndef CERES_NO_LAPACK | 
 | TEST_F(SchurComplementSolverTest, DenseSchurWithLAPACKSmallProblem) { | 
 |   ComputeAndCompareSolutions(2, false, DENSE_SCHUR, LAPACK, SUITE_SPARSE, true); | 
 |   ComputeAndCompareSolutions(2, true, DENSE_SCHUR, LAPACK, SUITE_SPARSE, true); | 
 | } | 
 |  | 
 | TEST_F(SchurComplementSolverTest, DenseSchurWithLAPACKLargeProblem) { | 
 |   ComputeAndCompareSolutions(3, false, DENSE_SCHUR, LAPACK, SUITE_SPARSE, true); | 
 |   ComputeAndCompareSolutions(3, true, DENSE_SCHUR, LAPACK, SUITE_SPARSE, true); | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 | TEST_F(SchurComplementSolverTest, | 
 |        SparseSchurWithSuiteSparseSmallProblemNoPostOrdering) { | 
 |   ComputeAndCompareSolutions( | 
 |       2, false, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, false); | 
 |   ComputeAndCompareSolutions(2, true, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, false); | 
 | } | 
 |  | 
 | TEST_F(SchurComplementSolverTest, | 
 |        SparseSchurWithSuiteSparseSmallProblemPostOrdering) { | 
 |   ComputeAndCompareSolutions(2, false, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, true); | 
 |   ComputeAndCompareSolutions(2, true, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, true); | 
 | } | 
 |  | 
 | TEST_F(SchurComplementSolverTest, | 
 |        SparseSchurWithSuiteSparseLargeProblemNoPostOrdering) { | 
 |   ComputeAndCompareSolutions( | 
 |       3, false, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, false); | 
 |   ComputeAndCompareSolutions(3, true, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, false); | 
 | } | 
 |  | 
 | TEST_F(SchurComplementSolverTest, | 
 |        SparseSchurWithSuiteSparseLargeProblemPostOrdering) { | 
 |   ComputeAndCompareSolutions(3, false, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, true); | 
 |   ComputeAndCompareSolutions(3, true, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, true); | 
 | } | 
 | #endif  // CERES_NO_SUITESPARSE | 
 |  | 
 | #ifndef CERES_NO_CXSPARSE | 
 | TEST_F(SchurComplementSolverTest, SparseSchurWithCXSparseSmallProblem) { | 
 |   ComputeAndCompareSolutions(2, false, SPARSE_SCHUR, EIGEN, CX_SPARSE, true); | 
 |   ComputeAndCompareSolutions(2, true, SPARSE_SCHUR, EIGEN, CX_SPARSE, true); | 
 | } | 
 |  | 
 | TEST_F(SchurComplementSolverTest, SparseSchurWithCXSparseLargeProblem) { | 
 |   ComputeAndCompareSolutions(3, false, SPARSE_SCHUR, EIGEN, CX_SPARSE, true); | 
 |   ComputeAndCompareSolutions(3, true, SPARSE_SCHUR, EIGEN, CX_SPARSE, true); | 
 | } | 
 | #endif  // CERES_NO_CXSPARSE | 
 |  | 
 | #ifndef CERES_NO_ACCELERATE_SPARSE | 
 | TEST_F(SchurComplementSolverTest, SparseSchurWithAccelerateSparseSmallProblem) { | 
 |   ComputeAndCompareSolutions( | 
 |       2, false, SPARSE_SCHUR, EIGEN, ACCELERATE_SPARSE, true); | 
 |   ComputeAndCompareSolutions( | 
 |       2, true, SPARSE_SCHUR, EIGEN, ACCELERATE_SPARSE, true); | 
 | } | 
 |  | 
 | TEST_F(SchurComplementSolverTest, SparseSchurWithAccelerateSparseLargeProblem) { | 
 |   ComputeAndCompareSolutions( | 
 |       3, false, SPARSE_SCHUR, EIGEN, ACCELERATE_SPARSE, true); | 
 |   ComputeAndCompareSolutions( | 
 |       3, true, SPARSE_SCHUR, EIGEN, ACCELERATE_SPARSE, true); | 
 | } | 
 | #endif  // CERES_NO_ACCELERATE_SPARSE | 
 |  | 
 | #ifdef CERES_USE_EIGEN_SPARSE | 
 | TEST_F(SchurComplementSolverTest, SparseSchurWithEigenSparseSmallProblem) { | 
 |   ComputeAndCompareSolutions(2, false, SPARSE_SCHUR, EIGEN, EIGEN_SPARSE, true); | 
 |   ComputeAndCompareSolutions(2, true, SPARSE_SCHUR, EIGEN, EIGEN_SPARSE, true); | 
 | } | 
 |  | 
 | TEST_F(SchurComplementSolverTest, SparseSchurWithEigenSparseLargeProblem) { | 
 |   ComputeAndCompareSolutions(3, false, SPARSE_SCHUR, EIGEN, EIGEN_SPARSE, true); | 
 |   ComputeAndCompareSolutions(3, true, SPARSE_SCHUR, EIGEN, EIGEN_SPARSE, true); | 
 | } | 
 | #endif  // CERES_USE_EIGEN_SPARSE | 
 |  | 
 | }  // namespace ceres::internal |