|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2018 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Authors: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "benchmark/benchmark.h" | 
|  | #include "ceres/small_blas.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | // Benchmarking matrix-vector multiply routines and optimizing memory | 
|  | // access requires that we make sure that they are not just sitting in | 
|  | // the cache. So, as the benchmarking routine iterates, we need to | 
|  | // multiply new/different matrice and vectors. Allocating/creating | 
|  | // these objects in the benchmarking loop is too heavy duty, so we | 
|  | // create them before hand and cycle through them in the | 
|  | // benchmark. This class, given the size of the matrix creates such | 
|  | // matrix and vector objects for use in the benchmark. | 
|  | class MatrixVectorMultiplyData { | 
|  | public: | 
|  | MatrixVectorMultiplyData(int rows, int cols) | 
|  | : num_elements_(1000), | 
|  | rows_(rows), | 
|  | cols_(cols), | 
|  | a_(num_elements_ * rows, 1.001), | 
|  | b_(num_elements_ * rows * cols, 1.5), | 
|  | c_(num_elements_ * cols, 1.00003) {} | 
|  |  | 
|  | int num_elements() const { return num_elements_; } | 
|  | double* GetA(int i) { return &a_[i * rows_]; } | 
|  | double* GetB(int i) { return &b_[i * rows_ * cols_]; } | 
|  | double* GetC(int i) { return &c_[i * cols_]; } | 
|  |  | 
|  | private: | 
|  | const int num_elements_; | 
|  | const int rows_; | 
|  | const int cols_; | 
|  | std::vector<double> a_; | 
|  | std::vector<double> b_; | 
|  | std::vector<double> c_; | 
|  | }; | 
|  |  | 
|  | // Helper function to generate the various matrix sizes for which we | 
|  | // run the benchmark. | 
|  | static void MatrixSizeArguments(benchmark::internal::Benchmark* benchmark) { | 
|  | std::vector<int> rows = {1, 2, 3, 4, 6, 8}; | 
|  | std::vector<int> cols = {1, 2, 3, 4, 8, 12, 15}; | 
|  | for (int r : rows) { | 
|  | for (int c : cols) { | 
|  | benchmark->Args({r, c}); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void BM_MatrixVectorMultiply(benchmark::State& state) { | 
|  | const int rows = state.range(0); | 
|  | const int cols = state.range(1); | 
|  | MatrixVectorMultiplyData data(rows, cols); | 
|  | const int num_elements = data.num_elements(); | 
|  | int iter = 0; | 
|  | for (auto _ : state) { | 
|  | // A += B * C; | 
|  | internal::MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
|  | data.GetB(iter), rows, cols, data.GetC(iter), data.GetA(iter)); | 
|  | iter = (iter + 1) % num_elements; | 
|  | } | 
|  | } | 
|  |  | 
|  | BENCHMARK(BM_MatrixVectorMultiply)->Apply(MatrixSizeArguments); | 
|  |  | 
|  | static void BM_MatrixTransposeVectorMultiply(benchmark::State& state) { | 
|  | const int rows = state.range(0); | 
|  | const int cols = state.range(1); | 
|  | MatrixVectorMultiplyData data(cols, rows); | 
|  | const int num_elements = data.num_elements(); | 
|  | int iter = 0; | 
|  | for (auto _ : state) { | 
|  | internal::MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
|  | data.GetB(iter), rows, cols, data.GetC(iter), data.GetA(iter)); | 
|  | iter = (iter + 1) % num_elements; | 
|  | } | 
|  | } | 
|  |  | 
|  | BENCHMARK(BM_MatrixTransposeVectorMultiply)->Apply(MatrixSizeArguments); | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | BENCHMARK_MAIN(); |