| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // The National Institute of Standards and Technology has released a | 
 | // set of problems to test non-linear least squares solvers. | 
 | // | 
 | // More information about the background on these problems and | 
 | // suggested evaluation methodology can be found at: | 
 | // | 
 | //   http://www.itl.nist.gov/div898/strd/nls/nls_info.shtml | 
 | // | 
 | // The problem data themselves can be found at | 
 | // | 
 | //   http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml | 
 | // | 
 | // The problems are divided into three levels of difficulty, Easy, | 
 | // Medium and Hard. For each problem there are two starting guesses, | 
 | // the first one far away from the global minimum and the second | 
 | // closer to it. | 
 | // | 
 | // A problem is considered successfully solved, if every components of | 
 | // the solution matches the globally optimal solution in at least 4 | 
 | // digits or more. | 
 | // | 
 | // This dataset was used for an evaluation of Non-linear least squares | 
 | // solvers: | 
 | // | 
 | // P. F. Mondragon & B. Borchers, A Comparison of Nonlinear Regression | 
 | // Codes, Journal of Modern Applied Statistical Methods, 4(1):343-351, | 
 | // 2005. | 
 | // | 
 | // The results from Mondragon & Borchers can be summarized as | 
 | //               Excel  Gnuplot  GaussFit  HBN  MinPack | 
 | // Average LRE     2.3      4.3       4.0  6.8      4.4 | 
 | //      Winner       1        5        12   29       12 | 
 | // | 
 | // Where the row Winner counts, the number of problems for which the | 
 | // solver had the highest LRE. | 
 |  | 
 | // In this file, we implement the same evaluation methodology using | 
 | // Ceres. Currently using Levenberg-Marquardt with DENSE_QR, we get | 
 | // | 
 | //               Excel  Gnuplot  GaussFit  HBN  MinPack  Ceres | 
 | // Average LRE     2.3      4.3       4.0  6.8      4.4    9.4 | 
 | //      Winner       0        0         5   11        2     41 | 
 |  | 
 | #include <Eigen/Core> | 
 | #include <fstream> | 
 | #include <iostream> | 
 | #include <iterator> | 
 |  | 
 | #include "ceres/ceres.h" | 
 | #include "ceres/tiny_solver.h" | 
 | #include "ceres/tiny_solver_cost_function_adapter.h" | 
 | #include "gflags/gflags.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | DEFINE_bool(use_tiny_solver, false, "Use TinySolver instead of Ceres::Solver"); | 
 | DEFINE_string(nist_data_dir, "", "Directory containing the NIST non-linear" | 
 |               "regression examples"); | 
 | DEFINE_string(minimizer, "trust_region", | 
 |               "Minimizer type to use, choices are: line_search & trust_region"); | 
 | DEFINE_string(trust_region_strategy, "levenberg_marquardt", | 
 |               "Options are: levenberg_marquardt, dogleg"); | 
 | DEFINE_string(dogleg, "traditional_dogleg", | 
 |               "Options are: traditional_dogleg, subspace_dogleg"); | 
 | DEFINE_string(linear_solver, "dense_qr", "Options are: " | 
 |               "sparse_cholesky, dense_qr, dense_normal_cholesky and" | 
 |               "cgnr"); | 
 | DEFINE_string(preconditioner, "jacobi", "Options are: " | 
 |               "identity, jacobi"); | 
 | DEFINE_string(line_search, "wolfe", | 
 |               "Line search algorithm to use, choices are: armijo and wolfe."); | 
 | DEFINE_string(line_search_direction, "lbfgs", | 
 |               "Line search direction algorithm to use, choices: lbfgs, bfgs"); | 
 | DEFINE_int32(max_line_search_iterations, 20, | 
 |              "Maximum number of iterations for each line search."); | 
 | DEFINE_int32(max_line_search_restarts, 10, | 
 |              "Maximum number of restarts of line search direction algorithm."); | 
 | DEFINE_string(line_search_interpolation, "cubic", | 
 |               "Degree of polynomial aproximation in line search, " | 
 |               "choices are: bisection, quadratic & cubic."); | 
 | DEFINE_int32(lbfgs_rank, 20, | 
 |              "Rank of L-BFGS inverse Hessian approximation in line search."); | 
 | DEFINE_bool(approximate_eigenvalue_bfgs_scaling, false, | 
 |             "Use approximate eigenvalue scaling in (L)BFGS line search."); | 
 | DEFINE_double(sufficient_decrease, 1.0e-4, | 
 |               "Line search Armijo sufficient (function) decrease factor."); | 
 | DEFINE_double(sufficient_curvature_decrease, 0.9, | 
 |               "Line search Wolfe sufficient curvature decrease factor."); | 
 | DEFINE_int32(num_iterations, 10000, "Number of iterations"); | 
 | DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use" | 
 |             " nonmonotic steps"); | 
 | DEFINE_double(initial_trust_region_radius, 1e4, "Initial trust region radius"); | 
 | DEFINE_bool(use_numeric_diff, false, | 
 |             "Use numeric differentiation instead of automatic " | 
 |             "differentiation."); | 
 | DEFINE_string(numeric_diff_method, "ridders", "When using numeric " | 
 |               "differentiation, selects algorithm. Options are: central, " | 
 |               "forward, ridders."); | 
 | DEFINE_double(ridders_step_size, 1e-9, "Initial step size for Ridders " | 
 |               "numeric differentiation."); | 
 | DEFINE_int32(ridders_extrapolations, 3, "Maximal number of Ridders " | 
 |              "extrapolations."); | 
 |  | 
 | namespace ceres { | 
 | namespace examples { | 
 |  | 
 | using Eigen::Dynamic; | 
 | using Eigen::RowMajor; | 
 | typedef Eigen::Matrix<double, Dynamic, 1> Vector; | 
 | typedef Eigen::Matrix<double, Dynamic, Dynamic, RowMajor> Matrix; | 
 |  | 
 | using std::atof; | 
 | using std::atoi; | 
 | using std::cout; | 
 | using std::ifstream; | 
 | using std::string; | 
 | using std::vector; | 
 |  | 
 | void SplitStringUsingChar(const string& full, | 
 |                           const char delim, | 
 |                           vector<string>* result) { | 
 |   std::back_insert_iterator< vector<string> > it(*result); | 
 |  | 
 |   const char* p = full.data(); | 
 |   const char* end = p + full.size(); | 
 |   while (p != end) { | 
 |     if (*p == delim) { | 
 |       ++p; | 
 |     } else { | 
 |       const char* start = p; | 
 |       while (++p != end && *p != delim) { | 
 |         // Skip to the next occurence of the delimiter. | 
 |       } | 
 |       *it++ = string(start, p - start); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool GetAndSplitLine(ifstream& ifs, vector<string>* pieces) { | 
 |   pieces->clear(); | 
 |   char buf[256]; | 
 |   ifs.getline(buf, 256); | 
 |   SplitStringUsingChar(string(buf), ' ', pieces); | 
 |   return true; | 
 | } | 
 |  | 
 | void SkipLines(ifstream& ifs, int num_lines) { | 
 |   char buf[256]; | 
 |   for (int i = 0; i < num_lines; ++i) { | 
 |     ifs.getline(buf, 256); | 
 |   } | 
 | } | 
 |  | 
 | class NISTProblem { | 
 |  public: | 
 |   explicit NISTProblem(const string& filename) { | 
 |     ifstream ifs(filename.c_str(), ifstream::in); | 
 |     CHECK(ifs) << "Unable to open : " << filename; | 
 |  | 
 |     vector<string> pieces; | 
 |     SkipLines(ifs, 24); | 
 |     GetAndSplitLine(ifs, &pieces); | 
 |     const int kNumResponses = atoi(pieces[1].c_str()); | 
 |  | 
 |     GetAndSplitLine(ifs, &pieces); | 
 |     const int kNumPredictors = atoi(pieces[0].c_str()); | 
 |  | 
 |     GetAndSplitLine(ifs, &pieces); | 
 |     const int kNumObservations = atoi(pieces[0].c_str()); | 
 |  | 
 |     SkipLines(ifs, 4); | 
 |     GetAndSplitLine(ifs, &pieces); | 
 |     const int kNumParameters = atoi(pieces[0].c_str()); | 
 |     SkipLines(ifs, 8); | 
 |  | 
 |     // Get the first line of initial and final parameter values to | 
 |     // determine the number of tries. | 
 |     GetAndSplitLine(ifs, &pieces); | 
 |     const int kNumTries = pieces.size() - 4; | 
 |  | 
 |     predictor_.resize(kNumObservations, kNumPredictors); | 
 |     response_.resize(kNumObservations, kNumResponses); | 
 |     initial_parameters_.resize(kNumTries, kNumParameters); | 
 |     final_parameters_.resize(1, kNumParameters); | 
 |  | 
 |     // Parse the line for parameter b1. | 
 |     int parameter_id = 0; | 
 |     for (int i = 0; i < kNumTries; ++i) { | 
 |       initial_parameters_(i, parameter_id) = atof(pieces[i + 2].c_str()); | 
 |     } | 
 |     final_parameters_(0, parameter_id) = atof(pieces[2 + kNumTries].c_str()); | 
 |  | 
 |     // Parse the remaining parameter lines. | 
 |     for (int parameter_id = 1; parameter_id < kNumParameters; ++parameter_id) { | 
 |      GetAndSplitLine(ifs, &pieces); | 
 |      // b2, b3, .... | 
 |      for (int i = 0; i < kNumTries; ++i) { | 
 |        initial_parameters_(i, parameter_id) = atof(pieces[i + 2].c_str()); | 
 |      } | 
 |      final_parameters_(0, parameter_id) = atof(pieces[2 + kNumTries].c_str()); | 
 |     } | 
 |  | 
 |     // Certfied cost | 
 |     SkipLines(ifs, 1); | 
 |     GetAndSplitLine(ifs, &pieces); | 
 |     certified_cost_ = atof(pieces[4].c_str()) / 2.0; | 
 |  | 
 |     // Read the observations. | 
 |     SkipLines(ifs, 18 - kNumParameters); | 
 |     for (int i = 0; i < kNumObservations; ++i) { | 
 |       GetAndSplitLine(ifs, &pieces); | 
 |       // Response. | 
 |       for (int j = 0; j < kNumResponses; ++j) { | 
 |         response_(i, j) =  atof(pieces[j].c_str()); | 
 |       } | 
 |  | 
 |       // Predictor variables. | 
 |       for (int j = 0; j < kNumPredictors; ++j) { | 
 |         predictor_(i, j) =  atof(pieces[j + kNumResponses].c_str()); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   Matrix initial_parameters(int start) const { return initial_parameters_.row(start); }  // NOLINT | 
 |   Matrix final_parameters() const  { return final_parameters_; } | 
 |   Matrix predictor()        const { return predictor_;         } | 
 |   Matrix response()         const { return response_;          } | 
 |   int predictor_size()      const { return predictor_.cols();  } | 
 |   int num_observations()    const { return predictor_.rows();  } | 
 |   int response_size()       const { return response_.cols();   } | 
 |   int num_parameters()      const { return initial_parameters_.cols(); } | 
 |   int num_starts()          const { return initial_parameters_.rows(); } | 
 |   double certified_cost()   const { return certified_cost_; } | 
 |  | 
 |  private: | 
 |   Matrix predictor_; | 
 |   Matrix response_; | 
 |   Matrix initial_parameters_; | 
 |   Matrix final_parameters_; | 
 |   double certified_cost_; | 
 | }; | 
 |  | 
 | #define NIST_BEGIN(CostFunctionName)                          \ | 
 |   struct CostFunctionName {                                   \ | 
 |   CostFunctionName(const double* const x,                     \ | 
 |                    const double* const y,                     \ | 
 |                    const int n)                               \ | 
 |       : x_(x), y_(y), n_(n) {}                                \ | 
 |     const double* x_;                                         \ | 
 |     const double* y_;                                         \ | 
 |     const int n_;                                             \ | 
 |     template <typename T>                                     \ | 
 |     bool operator()(const T* const b, T* residual) const {    \ | 
 |       for (int i = 0; i < n_; ++i) {                          \ | 
 |         const T x(x_[i]);                                     \ | 
 |         residual[i] = y_[i] - ( | 
 |  | 
 | #define NIST_END ); } return true; }}; | 
 |  | 
 | // y = b1 * (b2+x)**(-1/b3)  +  e | 
 | NIST_BEGIN(Bennet5) | 
 |   b[0] * pow(b[1] + x, -1.0 / b[2]) | 
 | NIST_END | 
 |  | 
 | // y = b1*(1-exp[-b2*x])  +  e | 
 | NIST_BEGIN(BoxBOD) | 
 |   b[0] * (1.0 - exp(-b[1] * x)) | 
 | NIST_END | 
 |  | 
 | // y = exp[-b1*x]/(b2+b3*x)  +  e | 
 | NIST_BEGIN(Chwirut) | 
 |   exp(-b[0] * x) / (b[1] + b[2] * x) | 
 | NIST_END | 
 |  | 
 | // y  = b1*x**b2  +  e | 
 | NIST_BEGIN(DanWood) | 
 |   b[0] * pow(x, b[1]) | 
 | NIST_END | 
 |  | 
 | // y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 ) | 
 | //     + b6*exp( -(x-b7)**2 / b8**2 ) + e | 
 | NIST_BEGIN(Gauss) | 
 |   b[0] * exp(-b[1] * x) + | 
 |   b[2] * exp(-pow((x - b[3])/b[4], 2)) + | 
 |   b[5] * exp(-pow((x - b[6])/b[7], 2)) | 
 | NIST_END | 
 |  | 
 | // y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x)  +  e | 
 | NIST_BEGIN(Lanczos) | 
 |   b[0] * exp(-b[1] * x) + b[2] * exp(-b[3] * x) + b[4] * exp(-b[5] * x) | 
 | NIST_END | 
 |  | 
 | // y = (b1+b2*x+b3*x**2+b4*x**3) / | 
 | //     (1+b5*x+b6*x**2+b7*x**3)  +  e | 
 | NIST_BEGIN(Hahn1) | 
 |   (b[0] + b[1] * x + b[2] * x * x + b[3] * x * x * x) / | 
 |   (1.0 + b[4] * x + b[5] * x * x + b[6] * x * x * x) | 
 | NIST_END | 
 |  | 
 | // y = (b1 + b2*x + b3*x**2) / | 
 | //    (1 + b4*x + b5*x**2)  +  e | 
 | NIST_BEGIN(Kirby2) | 
 |   (b[0] + b[1] * x + b[2] * x * x) / | 
 |   (1.0 + b[3] * x + b[4] * x * x) | 
 | NIST_END | 
 |  | 
 | // y = b1*(x**2+x*b2) / (x**2+x*b3+b4)  +  e | 
 | NIST_BEGIN(MGH09) | 
 |   b[0] * (x * x + x * b[1]) / (x * x + x * b[2] + b[3]) | 
 | NIST_END | 
 |  | 
 | // y = b1 * exp[b2/(x+b3)]  +  e | 
 | NIST_BEGIN(MGH10) | 
 |   b[0] * exp(b[1] / (x + b[2])) | 
 | NIST_END | 
 |  | 
 | // y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5] | 
 | NIST_BEGIN(MGH17) | 
 |   b[0] + b[1] * exp(-x * b[3]) + b[2] * exp(-x * b[4]) | 
 | NIST_END | 
 |  | 
 | // y = b1*(1-exp[-b2*x])  +  e | 
 | NIST_BEGIN(Misra1a) | 
 |   b[0] * (1.0 - exp(-b[1] * x)) | 
 | NIST_END | 
 |  | 
 | // y = b1 * (1-(1+b2*x/2)**(-2))  +  e | 
 | NIST_BEGIN(Misra1b) | 
 |   b[0] * (1.0 - 1.0/ ((1.0 + b[1] * x / 2.0) * (1.0 + b[1] * x / 2.0)))  // NOLINT | 
 | NIST_END | 
 |  | 
 | // y = b1 * (1-(1+2*b2*x)**(-.5))  +  e | 
 | NIST_BEGIN(Misra1c) | 
 |   b[0] * (1.0 - pow(1.0 + 2.0 * b[1] * x, -0.5)) | 
 | NIST_END | 
 |  | 
 | // y = b1*b2*x*((1+b2*x)**(-1))  +  e | 
 | NIST_BEGIN(Misra1d) | 
 |   b[0] * b[1] * x / (1.0 + b[1] * x) | 
 | NIST_END | 
 |  | 
 | const double kPi = 3.141592653589793238462643383279; | 
 | // pi = 3.141592653589793238462643383279E0 | 
 | // y =  b1 - b2*x - arctan[b3/(x-b4)]/pi  +  e | 
 | NIST_BEGIN(Roszman1) | 
 |   b[0] - b[1] * x - atan2(b[2], (x - b[3])) / kPi | 
 | NIST_END | 
 |  | 
 | // y = b1 / (1+exp[b2-b3*x])  +  e | 
 | NIST_BEGIN(Rat42) | 
 |   b[0] / (1.0 + exp(b[1] - b[2] * x)) | 
 | NIST_END | 
 |  | 
 | // y = b1 / ((1+exp[b2-b3*x])**(1/b4))  +  e | 
 | NIST_BEGIN(Rat43) | 
 |   b[0] / pow(1.0 + exp(b[1] - b[2] * x), 1.0 / b[3]) | 
 | NIST_END | 
 |  | 
 | // y = (b1 + b2*x + b3*x**2 + b4*x**3) / | 
 | //    (1 + b5*x + b6*x**2 + b7*x**3)  +  e | 
 | NIST_BEGIN(Thurber) | 
 |   (b[0] + b[1] * x + b[2] * x * x  + b[3] * x * x * x) / | 
 |   (1.0 + b[4] * x + b[5] * x * x + b[6] * x * x * x) | 
 | NIST_END | 
 |  | 
 | // y = b1 + b2*cos( 2*pi*x/12 ) + b3*sin( 2*pi*x/12 ) | 
 | //        + b5*cos( 2*pi*x/b4 ) + b6*sin( 2*pi*x/b4 ) | 
 | //        + b8*cos( 2*pi*x/b7 ) + b9*sin( 2*pi*x/b7 )  + e | 
 | NIST_BEGIN(ENSO) | 
 |   b[0] + b[1] * cos(2.0 * kPi * x / 12.0) + | 
 |          b[2] * sin(2.0 * kPi * x / 12.0) + | 
 |          b[4] * cos(2.0 * kPi * x / b[3]) + | 
 |          b[5] * sin(2.0 * kPi * x / b[3]) + | 
 |          b[7] * cos(2.0 * kPi * x / b[6]) + | 
 |          b[8] * sin(2.0 * kPi * x / b[6]) | 
 | NIST_END | 
 |  | 
 | // y = (b1/b2) * exp[-0.5*((x-b3)/b2)**2]  +  e | 
 | NIST_BEGIN(Eckerle4) | 
 |   b[0] / b[1] * exp(-0.5 * pow((x - b[2])/b[1], 2)) | 
 | NIST_END | 
 |  | 
 | struct Nelson { | 
 |  public: | 
 |   Nelson(const double* const x, const double* const y, const int n) | 
 |       : x_(x), y_(y), n_(n) {} | 
 |  | 
 |   template <typename T> | 
 |   bool operator()(const T* const b, T* residual) const { | 
 |     // log[y] = b1 - b2*x1 * exp[-b3*x2]  +  e | 
 |     for (int i = 0; i < n_; ++i) { | 
 |       residual[i] = log(y_[i]) - (b[0] - b[1] * x_[2 * i] * exp(-b[2] * x_[2 * i + 1])); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   const double* x_; | 
 |   const double* y_; | 
 |   const int n_; | 
 | }; | 
 |  | 
 | static void SetNumericDiffOptions(ceres::NumericDiffOptions* options) { | 
 |   options->max_num_ridders_extrapolations = FLAGS_ridders_extrapolations; | 
 |   options->ridders_relative_initial_step_size = FLAGS_ridders_step_size; | 
 | } | 
 |  | 
 | void SetMinimizerOptions(ceres::Solver::Options* options) { | 
 |   CHECK( | 
 |       ceres::StringToMinimizerType(FLAGS_minimizer, &options->minimizer_type)); | 
 |   CHECK(ceres::StringToLinearSolverType(FLAGS_linear_solver, | 
 |                                         &options->linear_solver_type)); | 
 |   CHECK(ceres::StringToPreconditionerType(FLAGS_preconditioner, | 
 |                                           &options->preconditioner_type)); | 
 |   CHECK(ceres::StringToTrustRegionStrategyType( | 
 |       FLAGS_trust_region_strategy, &options->trust_region_strategy_type)); | 
 |   CHECK(ceres::StringToDoglegType(FLAGS_dogleg, &options->dogleg_type)); | 
 |   CHECK(ceres::StringToLineSearchDirectionType( | 
 |       FLAGS_line_search_direction, &options->line_search_direction_type)); | 
 |   CHECK(ceres::StringToLineSearchType(FLAGS_line_search, | 
 |                                       &options->line_search_type)); | 
 |   CHECK(ceres::StringToLineSearchInterpolationType( | 
 |       FLAGS_line_search_interpolation, | 
 |       &options->line_search_interpolation_type)); | 
 |  | 
 |   options->max_num_iterations = FLAGS_num_iterations; | 
 |   options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps; | 
 |   options->initial_trust_region_radius = FLAGS_initial_trust_region_radius; | 
 |   options->max_lbfgs_rank = FLAGS_lbfgs_rank; | 
 |   options->line_search_sufficient_function_decrease = FLAGS_sufficient_decrease; | 
 |   options->line_search_sufficient_curvature_decrease = | 
 |       FLAGS_sufficient_curvature_decrease; | 
 |   options->max_num_line_search_step_size_iterations = | 
 |       FLAGS_max_line_search_iterations; | 
 |   options->max_num_line_search_direction_restarts = | 
 |       FLAGS_max_line_search_restarts; | 
 |   options->use_approximate_eigenvalue_bfgs_scaling = | 
 |       FLAGS_approximate_eigenvalue_bfgs_scaling; | 
 |   options->function_tolerance = std::numeric_limits<double>::epsilon(); | 
 |   options->gradient_tolerance = std::numeric_limits<double>::epsilon(); | 
 |   options->parameter_tolerance = std::numeric_limits<double>::epsilon(); | 
 | } | 
 |  | 
 | string JoinPath(const string& dirname, const string& basename) { | 
 | #ifdef _WIN32 | 
 |     static const char separator = '\\'; | 
 | #else | 
 |     static const char separator = '/'; | 
 | #endif  // _WIN32 | 
 |  | 
 |   if ((!basename.empty() && basename[0] == separator) || dirname.empty()) { | 
 |     return basename; | 
 |   } else if (dirname[dirname.size() - 1] == separator) { | 
 |     return dirname + basename; | 
 |   } else { | 
 |     return dirname + string(&separator, 1) + basename; | 
 |   } | 
 | } | 
 |  | 
 | template <typename Model, int num_parameters> | 
 | CostFunction* CreateCostFunction(const Matrix& predictor, | 
 |                                  const Matrix& response, | 
 |                                  const int num_observations) { | 
 |   Model* model = | 
 |       new Model(predictor.data(), response.data(), num_observations); | 
 |   ceres::CostFunction* cost_function = NULL; | 
 |   if (FLAGS_use_numeric_diff) { | 
 |     ceres::NumericDiffOptions options; | 
 |     SetNumericDiffOptions(&options); | 
 |     if (FLAGS_numeric_diff_method == "central") { | 
 |       cost_function = new NumericDiffCostFunction<Model, | 
 |                                                   ceres::CENTRAL, | 
 |                                                   ceres::DYNAMIC, | 
 |                                                   num_parameters>( | 
 |           model, | 
 |           ceres::TAKE_OWNERSHIP, | 
 |           num_observations, | 
 |           options); | 
 |     } else if (FLAGS_numeric_diff_method == "forward") { | 
 |       cost_function = new NumericDiffCostFunction<Model, | 
 |                                                   ceres::FORWARD, | 
 |                                                   ceres::DYNAMIC, | 
 |                                                   num_parameters>( | 
 |           model, | 
 |           ceres::TAKE_OWNERSHIP, | 
 |           num_observations, | 
 |           options); | 
 |     } else if (FLAGS_numeric_diff_method == "ridders") { | 
 |       cost_function = new NumericDiffCostFunction<Model, | 
 |                                                   ceres::RIDDERS, | 
 |                                                   ceres::DYNAMIC, | 
 |                                                   num_parameters>( | 
 |           model, | 
 |           ceres::TAKE_OWNERSHIP, | 
 |           num_observations, | 
 |           options); | 
 |     } else { | 
 |       LOG(ERROR) << "Invalid numeric diff method specified"; | 
 |       return 0; | 
 |     } | 
 |   } else { | 
 |     cost_function = | 
 |         new ceres::AutoDiffCostFunction<Model, ceres::DYNAMIC, num_parameters>( | 
 |             model, num_observations); | 
 |   } | 
 |   return cost_function; | 
 | } | 
 |  | 
 | double ComputeLRE(const Matrix& expected, const Matrix& actual) { | 
 |   // Compute the LRE by comparing each component of the solution | 
 |   // with the ground truth, and taking the minimum. | 
 |   const double kMaxNumSignificantDigits = 11; | 
 |   double log_relative_error = kMaxNumSignificantDigits + 1; | 
 |   for (int i = 0; i < expected.cols(); ++i) { | 
 |     const double tmp_lre = -std::log10(std::fabs(expected(i) - actual(i)) / | 
 |                                        std::fabs(expected(i))); | 
 |     // The maximum LRE is capped at 11 - the precision at which the | 
 |     // ground truth is known. | 
 |     // | 
 |     // The minimum LRE is capped at 0 - no digits match between the | 
 |     // computed solution and the ground truth. | 
 |     log_relative_error = | 
 |         std::min(log_relative_error, | 
 |                  std::max(0.0, std::min(kMaxNumSignificantDigits, tmp_lre))); | 
 |   } | 
 |   return log_relative_error; | 
 | } | 
 |  | 
 | template <typename Model, int num_parameters> | 
 | int RegressionDriver(const string& filename) { | 
 |   NISTProblem nist_problem(JoinPath(FLAGS_nist_data_dir, filename)); | 
 |   CHECK_EQ(num_parameters, nist_problem.num_parameters()); | 
 |  | 
 |   Matrix predictor = nist_problem.predictor(); | 
 |   Matrix response = nist_problem.response(); | 
 |   Matrix final_parameters = nist_problem.final_parameters(); | 
 |  | 
 |   printf("%s\n", filename.c_str()); | 
 |  | 
 |   // Each NIST problem comes with multiple starting points, so we | 
 |   // construct the problem from scratch for each case and solve it. | 
 |   int num_success = 0; | 
 |   for (int start = 0; start < nist_problem.num_starts(); ++start) { | 
 |     Matrix initial_parameters = nist_problem.initial_parameters(start); | 
 |     ceres::CostFunction* cost_function = CreateCostFunction<Model, num_parameters>( | 
 |         predictor, response,  nist_problem.num_observations()); | 
 |  | 
 |     double initial_cost; | 
 |     double final_cost; | 
 |  | 
 |     if (!FLAGS_use_tiny_solver) { | 
 |       ceres::Problem problem; | 
 |       problem.AddResidualBlock(cost_function, NULL, initial_parameters.data()); | 
 |       ceres::Solver::Summary summary; | 
 |       ceres::Solver::Options options; | 
 |       SetMinimizerOptions(&options); | 
 |       Solve(options, &problem, &summary); | 
 |       initial_cost = summary.initial_cost; | 
 |       final_cost = summary.final_cost; | 
 |     } else { | 
 |       ceres::TinySolverCostFunctionAdapter<Eigen::Dynamic, num_parameters> cfa( | 
 |           *cost_function); | 
 |       typedef ceres::TinySolver< | 
 |           ceres::TinySolverCostFunctionAdapter<Eigen::Dynamic, num_parameters> > | 
 |           Solver; | 
 |       Solver solver; | 
 |       solver.options.max_num_iterations = FLAGS_num_iterations; | 
 |       solver.options.gradient_tolerance = | 
 |           std::numeric_limits<double>::epsilon(); | 
 |       solver.options.parameter_tolerance = | 
 |           std::numeric_limits<double>::epsilon(); | 
 |  | 
 |       Eigen::Matrix<double, num_parameters, 1> x; | 
 |       x = initial_parameters.transpose(); | 
 |       typename Solver::Summary summary = solver.Solve(cfa, &x); | 
 |       initial_parameters = x; | 
 |       initial_cost = summary.initial_cost; | 
 |       final_cost = summary.final_cost; | 
 |       delete cost_function; | 
 |     } | 
 |  | 
 |     const double log_relative_error = ComputeLRE(nist_problem.final_parameters(), | 
 |                                                  initial_parameters); | 
 |     const int kMinNumMatchingDigits = 4; | 
 |     if (log_relative_error > kMinNumMatchingDigits) { | 
 |       ++num_success; | 
 |     } | 
 |  | 
 |     printf( | 
 |         "start: %d status: %s lre: %4.1f initial cost: %e final cost:%e " | 
 |         "certified cost: %e\n", | 
 |         start + 1, | 
 |         log_relative_error < kMinNumMatchingDigits ? "FAILURE" : "SUCCESS", | 
 |         log_relative_error, | 
 |         initial_cost, | 
 |         final_cost, | 
 |         nist_problem.certified_cost()); | 
 |   } | 
 |   return num_success; | 
 | } | 
 |  | 
 |  | 
 | void SolveNISTProblems() { | 
 |   if (FLAGS_nist_data_dir.empty()) { | 
 |     LOG(FATAL) << "Must specify the directory containing the NIST problems"; | 
 |   } | 
 |  | 
 |   cout << "Lower Difficulty\n"; | 
 |   int easy_success = 0; | 
 |   easy_success += RegressionDriver<Misra1a, 2>("Misra1a.dat"); | 
 |   easy_success += RegressionDriver<Chwirut, 3>("Chwirut1.dat"); | 
 |   easy_success += RegressionDriver<Chwirut, 3>("Chwirut2.dat"); | 
 |   easy_success += RegressionDriver<Lanczos, 6>("Lanczos3.dat"); | 
 |   easy_success += RegressionDriver<Gauss, 8>("Gauss1.dat"); | 
 |   easy_success += RegressionDriver<Gauss, 8>("Gauss2.dat"); | 
 |   easy_success += RegressionDriver<DanWood, 2>("DanWood.dat"); | 
 |   easy_success += RegressionDriver<Misra1b, 2>("Misra1b.dat"); | 
 |  | 
 |   cout << "\nMedium Difficulty\n"; | 
 |   int medium_success = 0; | 
 |   medium_success += RegressionDriver<Kirby2, 5>("Kirby2.dat"); | 
 |   medium_success += RegressionDriver<Hahn1, 7>("Hahn1.dat"); | 
 |   medium_success += RegressionDriver<Nelson, 3>("Nelson.dat"); | 
 |   medium_success += RegressionDriver<MGH17, 5>("MGH17.dat"); | 
 |   medium_success += RegressionDriver<Lanczos, 6>("Lanczos1.dat"); | 
 |   medium_success += RegressionDriver<Lanczos, 6>("Lanczos2.dat"); | 
 |   medium_success += RegressionDriver<Gauss, 8>("Gauss3.dat"); | 
 |   medium_success += RegressionDriver<Misra1c, 2>("Misra1c.dat"); | 
 |   medium_success += RegressionDriver<Misra1d, 2>("Misra1d.dat"); | 
 |   medium_success += RegressionDriver<Roszman1, 4>("Roszman1.dat"); | 
 |   medium_success += RegressionDriver<ENSO, 9>("ENSO.dat"); | 
 |  | 
 |   cout << "\nHigher Difficulty\n"; | 
 |   int hard_success = 0; | 
 |   hard_success += RegressionDriver<MGH09, 4>("MGH09.dat"); | 
 |   hard_success += RegressionDriver<Thurber, 7>("Thurber.dat"); | 
 |   hard_success += RegressionDriver<BoxBOD, 2>("BoxBOD.dat"); | 
 |   hard_success += RegressionDriver<Rat42, 3>("Rat42.dat"); | 
 |   hard_success += RegressionDriver<MGH10, 3>("MGH10.dat"); | 
 |   hard_success += RegressionDriver<Eckerle4, 3>("Eckerle4.dat"); | 
 |   hard_success += RegressionDriver<Rat43, 4>("Rat43.dat"); | 
 |   hard_success += RegressionDriver<Bennet5, 3>("Bennett5.dat"); | 
 |  | 
 |   cout << "\n"; | 
 |   cout << "Easy    : " << easy_success << "/16\n"; | 
 |   cout << "Medium  : " << medium_success << "/22\n"; | 
 |   cout << "Hard    : " << hard_success << "/16\n"; | 
 |   cout << "Total   : " << easy_success + medium_success + hard_success | 
 |        << "/54\n"; | 
 | } | 
 |  | 
 | }  // namespace examples | 
 | }  // namespace ceres | 
 |  | 
 | int main(int argc, char** argv) { | 
 |   CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); | 
 |   google::InitGoogleLogging(argv[0]); | 
 |   ceres::examples::SolveNISTProblems(); | 
 |   return 0; | 
 | } |