|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: richie.stebbing@gmail.com (Richard Stebbing) | 
|  |  | 
|  | #include "ceres/dynamic_compressed_row_sparse_matrix.h" | 
|  |  | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using std::copy; | 
|  | using std::vector; | 
|  |  | 
|  | class DynamicCompressedRowSparseMatrixTest : public ::testing::Test { | 
|  | protected: | 
|  | virtual void SetUp() { | 
|  | num_rows = 7; | 
|  | num_cols = 4; | 
|  |  | 
|  | // The number of additional elements reserved when `Finalize` is called | 
|  | // should have no effect on the number of rows, columns or nonzeros. | 
|  | // Set this to some nonzero value to be sure. | 
|  | num_additional_elements = 13; | 
|  |  | 
|  | expected_num_nonzeros = num_rows * num_cols - std::min(num_rows, num_cols); | 
|  |  | 
|  | InitialiseDenseReference(); | 
|  | InitialiseSparseMatrixReferences(); | 
|  |  | 
|  | dcrsm.reset(new DynamicCompressedRowSparseMatrix(num_rows, | 
|  | num_cols, | 
|  | 0)); | 
|  | } | 
|  |  | 
|  | void Finalize() { | 
|  | dcrsm->Finalize(num_additional_elements); | 
|  | } | 
|  |  | 
|  | void InitialiseDenseReference() { | 
|  | dense.resize(num_rows, num_cols); | 
|  | dense.setZero(); | 
|  | int num_nonzeros = 0; | 
|  | for (int i = 0; i < (num_rows * num_cols); ++i) { | 
|  | const int r = i / num_cols, c = i % num_cols; | 
|  | if (r != c) { | 
|  | dense(r, c) = i + 1; | 
|  | ++num_nonzeros; | 
|  | } | 
|  | } | 
|  | ASSERT_EQ(num_nonzeros, expected_num_nonzeros); | 
|  | } | 
|  |  | 
|  | void InitialiseSparseMatrixReferences() { | 
|  | vector<int> rows, cols; | 
|  | vector<double> values; | 
|  | for (int i = 0; i < (num_rows * num_cols); ++i) { | 
|  | const int r = i / num_cols, c = i % num_cols; | 
|  | if (r != c) { | 
|  | rows.push_back(r); | 
|  | cols.push_back(c); | 
|  | values.push_back(i + 1); | 
|  | } | 
|  | } | 
|  | ASSERT_EQ(values.size(), expected_num_nonzeros); | 
|  |  | 
|  | tsm.reset(new TripletSparseMatrix(num_rows, | 
|  | num_cols, | 
|  | expected_num_nonzeros)); | 
|  | copy(rows.begin(), rows.end(), tsm->mutable_rows()); | 
|  | copy(cols.begin(), cols.end(), tsm->mutable_cols()); | 
|  | copy(values.begin(), values.end(), tsm->mutable_values()); | 
|  | tsm->set_num_nonzeros(values.size()); | 
|  |  | 
|  | Matrix dense_from_tsm; | 
|  | tsm->ToDenseMatrix(&dense_from_tsm); | 
|  | ASSERT_TRUE((dense.array() == dense_from_tsm.array()).all()); | 
|  |  | 
|  | crsm.reset(CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm)); | 
|  | Matrix dense_from_crsm; | 
|  | crsm->ToDenseMatrix(&dense_from_crsm); | 
|  | ASSERT_TRUE((dense.array() == dense_from_crsm.array()).all()); | 
|  | } | 
|  |  | 
|  | void InsertNonZeroEntriesFromDenseReference() { | 
|  | for (int r = 0; r < num_rows; ++r) { | 
|  | for (int c = 0; c < num_cols; ++c) { | 
|  | const double& v = dense(r, c); | 
|  | if (v != 0.0) { | 
|  | dcrsm->InsertEntry(r, c, v); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExpectEmpty() { | 
|  | EXPECT_EQ(dcrsm->num_rows(), num_rows); | 
|  | EXPECT_EQ(dcrsm->num_cols(), num_cols); | 
|  | EXPECT_EQ(dcrsm->num_nonzeros(), 0); | 
|  |  | 
|  | Matrix dense_from_dcrsm; | 
|  | dcrsm->ToDenseMatrix(&dense_from_dcrsm); | 
|  | EXPECT_EQ(dense_from_dcrsm.rows(), num_rows); | 
|  | EXPECT_EQ(dense_from_dcrsm.cols(), num_cols); | 
|  | EXPECT_TRUE((dense_from_dcrsm.array() == 0.0).all()); | 
|  | } | 
|  |  | 
|  | void ExpectEqualToDenseReference() { | 
|  | Matrix dense_from_dcrsm; | 
|  | dcrsm->ToDenseMatrix(&dense_from_dcrsm); | 
|  | EXPECT_TRUE((dense.array() == dense_from_dcrsm.array()).all()); | 
|  | } | 
|  |  | 
|  | void ExpectEqualToCompressedRowSparseMatrixReference() { | 
|  | typedef Eigen::Map<const Eigen::VectorXi> ConstIntVectorRef; | 
|  |  | 
|  | ConstIntVectorRef crsm_rows(crsm->rows(), crsm->num_rows() + 1); | 
|  | ConstIntVectorRef dcrsm_rows(dcrsm->rows(), dcrsm->num_rows() + 1); | 
|  | EXPECT_TRUE((crsm_rows.array() == dcrsm_rows.array()).all()); | 
|  |  | 
|  | ConstIntVectorRef crsm_cols(crsm->cols(), crsm->num_nonzeros()); | 
|  | ConstIntVectorRef dcrsm_cols(dcrsm->cols(), dcrsm->num_nonzeros()); | 
|  | EXPECT_TRUE((crsm_cols.array() == dcrsm_cols.array()).all()); | 
|  |  | 
|  | ConstVectorRef crsm_values(crsm->values(), crsm->num_nonzeros()); | 
|  | ConstVectorRef dcrsm_values(dcrsm->values(), dcrsm->num_nonzeros()); | 
|  | EXPECT_TRUE((crsm_values.array() == dcrsm_values.array()).all()); | 
|  | } | 
|  |  | 
|  | int num_rows; | 
|  | int num_cols; | 
|  |  | 
|  | int num_additional_elements; | 
|  |  | 
|  | int expected_num_nonzeros; | 
|  |  | 
|  | Matrix dense; | 
|  | scoped_ptr<TripletSparseMatrix> tsm; | 
|  | scoped_ptr<CompressedRowSparseMatrix> crsm; | 
|  |  | 
|  | scoped_ptr<DynamicCompressedRowSparseMatrix> dcrsm; | 
|  | }; | 
|  |  | 
|  | TEST_F(DynamicCompressedRowSparseMatrixTest, Initialization) { | 
|  | ExpectEmpty(); | 
|  |  | 
|  | Finalize(); | 
|  | ExpectEmpty(); | 
|  | } | 
|  |  | 
|  | TEST_F(DynamicCompressedRowSparseMatrixTest, InsertEntryAndFinalize) { | 
|  | InsertNonZeroEntriesFromDenseReference(); | 
|  | ExpectEmpty(); | 
|  |  | 
|  | Finalize(); | 
|  | ExpectEqualToDenseReference(); | 
|  | ExpectEqualToCompressedRowSparseMatrixReference(); | 
|  | } | 
|  |  | 
|  | TEST_F(DynamicCompressedRowSparseMatrixTest, ClearRows) { | 
|  | InsertNonZeroEntriesFromDenseReference(); | 
|  | Finalize(); | 
|  | ExpectEqualToDenseReference(); | 
|  | ExpectEqualToCompressedRowSparseMatrixReference(); | 
|  |  | 
|  | dcrsm->ClearRows(0, 0); | 
|  | Finalize(); | 
|  | ExpectEqualToDenseReference(); | 
|  | ExpectEqualToCompressedRowSparseMatrixReference(); | 
|  |  | 
|  | dcrsm->ClearRows(0, num_rows); | 
|  | ExpectEqualToCompressedRowSparseMatrixReference(); | 
|  |  | 
|  | Finalize(); | 
|  | ExpectEmpty(); | 
|  |  | 
|  | InsertNonZeroEntriesFromDenseReference(); | 
|  | dcrsm->ClearRows(1, 2); | 
|  | Finalize(); | 
|  | dense.block(1, 0, 2, num_cols).setZero(); | 
|  | ExpectEqualToDenseReference(); | 
|  |  | 
|  | InitialiseDenseReference(); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |