| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // Interface for and implementation of various Line search algorithms. | 
 |  | 
 | #ifndef CERES_INTERNAL_LINE_SEARCH_H_ | 
 | #define CERES_INTERNAL_LINE_SEARCH_H_ | 
 |  | 
 | #include <string> | 
 | #include <vector> | 
 | #include "ceres/function_sample.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/port.h" | 
 | #include "ceres/types.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class Evaluator; | 
 | class LineSearchFunction; | 
 |  | 
 | // Line search is another name for a one dimensional optimization | 
 | // algorithm. The name "line search" comes from the fact one | 
 | // dimensional optimization problems that arise as subproblems of | 
 | // general multidimensional optimization problems. | 
 | // | 
 | // While finding the exact minimum of a one dimensionl function is | 
 | // hard, instances of LineSearch find a point that satisfies a | 
 | // sufficient decrease condition. Depending on the particular | 
 | // condition used, we get a variety of different line search | 
 | // algorithms, e.g., Armijo, Wolfe etc. | 
 | class LineSearch { | 
 |  public: | 
 |   struct Summary; | 
 |  | 
 |   struct Options { | 
 |     Options() | 
 |         : interpolation_type(CUBIC), | 
 |           sufficient_decrease(1e-4), | 
 |           max_step_contraction(1e-3), | 
 |           min_step_contraction(0.9), | 
 |           min_step_size(1e-9), | 
 |           max_num_iterations(20), | 
 |           sufficient_curvature_decrease(0.9), | 
 |           max_step_expansion(10.0), | 
 |           is_silent(false), | 
 |           function(NULL) {} | 
 |  | 
 |     // Degree of the polynomial used to approximate the objective | 
 |     // function. | 
 |     LineSearchInterpolationType interpolation_type; | 
 |  | 
 |     // Armijo and Wolfe line search parameters. | 
 |  | 
 |     // Solving the line search problem exactly is computationally | 
 |     // prohibitive. Fortunately, line search based optimization | 
 |     // algorithms can still guarantee convergence if instead of an | 
 |     // exact solution, the line search algorithm returns a solution | 
 |     // which decreases the value of the objective function | 
 |     // sufficiently. More precisely, we are looking for a step_size | 
 |     // s.t. | 
 |     // | 
 |     //  f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size | 
 |     double sufficient_decrease; | 
 |  | 
 |     // In each iteration of the Armijo / Wolfe line search, | 
 |     // | 
 |     // new_step_size >= max_step_contraction * step_size | 
 |     // | 
 |     // Note that by definition, for contraction: | 
 |     // | 
 |     //  0 < max_step_contraction < min_step_contraction < 1 | 
 |     // | 
 |     double max_step_contraction; | 
 |  | 
 |     // In each iteration of the Armijo / Wolfe line search, | 
 |     // | 
 |     // new_step_size <= min_step_contraction * step_size | 
 |     // Note that by definition, for contraction: | 
 |     // | 
 |     //  0 < max_step_contraction < min_step_contraction < 1 | 
 |     // | 
 |     double min_step_contraction; | 
 |  | 
 |     // If during the line search, the step_size falls below this | 
 |     // value, it is truncated to zero. | 
 |     double min_step_size; | 
 |  | 
 |     // Maximum number of trial step size iterations during each line search, | 
 |     // if a step size satisfying the search conditions cannot be found within | 
 |     // this number of trials, the line search will terminate. | 
 |     int max_num_iterations; | 
 |  | 
 |     // Wolfe-specific line search parameters. | 
 |  | 
 |     // The strong Wolfe conditions consist of the Armijo sufficient | 
 |     // decrease condition, and an additional requirement that the | 
 |     // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe | 
 |     // conditions) of the gradient along the search direction | 
 |     // decreases sufficiently. Precisely, this second condition | 
 |     // is that we seek a step_size s.t. | 
 |     // | 
 |     //   |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)| | 
 |     // | 
 |     // Where f() is the line search objective and f'() is the derivative | 
 |     // of f w.r.t step_size (d f / d step_size). | 
 |     double sufficient_curvature_decrease; | 
 |  | 
 |     // During the bracketing phase of the Wolfe search, the step size is | 
 |     // increased until either a point satisfying the Wolfe conditions is | 
 |     // found, or an upper bound for a bracket containing a point satisfying | 
 |     // the conditions is found.  Precisely, at each iteration of the | 
 |     // expansion: | 
 |     // | 
 |     //   new_step_size <= max_step_expansion * step_size. | 
 |     // | 
 |     // By definition for expansion, max_step_expansion > 1.0. | 
 |     double max_step_expansion; | 
 |  | 
 |     bool is_silent; | 
 |  | 
 |     // The one dimensional function that the line search algorithm | 
 |     // minimizes. | 
 |     LineSearchFunction* function; | 
 |   }; | 
 |  | 
 |   // Result of the line search. | 
 |   struct Summary { | 
 |     Summary() | 
 |         : success(false), | 
 |           num_function_evaluations(0), | 
 |           num_gradient_evaluations(0), | 
 |           num_iterations(0), | 
 |           cost_evaluation_time_in_seconds(-1.0), | 
 |           gradient_evaluation_time_in_seconds(-1.0), | 
 |           polynomial_minimization_time_in_seconds(-1.0), | 
 |           total_time_in_seconds(-1.0) {} | 
 |  | 
 |     bool success; | 
 |     FunctionSample optimal_point; | 
 |     int num_function_evaluations; | 
 |     int num_gradient_evaluations; | 
 |     int num_iterations; | 
 |     // Cumulative time spent evaluating the value of the cost function across | 
 |     // all iterations. | 
 |     double cost_evaluation_time_in_seconds; | 
 |     // Cumulative time spent evaluating the gradient of the cost function across | 
 |     // all iterations. | 
 |     double gradient_evaluation_time_in_seconds; | 
 |     // Cumulative time spent minimizing the interpolating polynomial to compute | 
 |     // the next candidate step size across all iterations. | 
 |     double polynomial_minimization_time_in_seconds; | 
 |     double total_time_in_seconds; | 
 |     std::string error; | 
 |   }; | 
 |  | 
 |   explicit LineSearch(const LineSearch::Options& options); | 
 |   virtual ~LineSearch() {} | 
 |  | 
 |   static LineSearch* Create(const LineSearchType line_search_type, | 
 |                             const LineSearch::Options& options, | 
 |                             std::string* error); | 
 |  | 
 |   // Perform the line search. | 
 |   // | 
 |   // step_size_estimate must be a positive number. | 
 |   // | 
 |   // initial_cost and initial_gradient are the values and gradient of | 
 |   // the function at zero. | 
 |   // summary must not be null and will contain the result of the line | 
 |   // search. | 
 |   // | 
 |   // Summary::success is true if a non-zero step size is found. | 
 |   void Search(double step_size_estimate, | 
 |               double initial_cost, | 
 |               double initial_gradient, | 
 |               Summary* summary) const; | 
 |   double InterpolatingPolynomialMinimizingStepSize( | 
 |       const LineSearchInterpolationType& interpolation_type, | 
 |       const FunctionSample& lowerbound_sample, | 
 |       const FunctionSample& previous_sample, | 
 |       const FunctionSample& current_sample, | 
 |       const double min_step_size, | 
 |       const double max_step_size) const; | 
 |  | 
 |  protected: | 
 |   const LineSearch::Options& options() const { return options_; } | 
 |  | 
 |  private: | 
 |   virtual void DoSearch(double step_size_estimate, | 
 |                         double initial_cost, | 
 |                         double initial_gradient, | 
 |                         Summary* summary) const = 0; | 
 |  | 
 |  private: | 
 |   LineSearch::Options options_; | 
 | }; | 
 |  | 
 | // An object used by the line search to access the function values | 
 | // and gradient of the one dimensional function being optimized. | 
 | // | 
 | // In practice, this object provides access to the objective | 
 | // function value and the directional derivative of the underlying | 
 | // optimization problem along a specific search direction. | 
 | class LineSearchFunction { | 
 |  public: | 
 |   explicit LineSearchFunction(Evaluator* evaluator); | 
 |   void Init(const Vector& position, const Vector& direction); | 
 |  | 
 |   // Evaluate the line search objective | 
 |   // | 
 |   //   f(x) = p(position + x * direction) | 
 |   // | 
 |   // Where, p is the objective function of the general optimization | 
 |   // problem. | 
 |   // | 
 |   // evaluate_gradient controls whether the gradient will be evaluated | 
 |   // or not. | 
 |   // | 
 |   // On return output->*_is_valid indicate indicate whether the | 
 |   // corresponding fields have numerically valid values or not. | 
 |   void Evaluate(double x, bool evaluate_gradient, FunctionSample* output); | 
 |  | 
 |   double DirectionInfinityNorm() const; | 
 |  | 
 |   // Resets to now, the start point for the results from TimeStatistics(). | 
 |   void ResetTimeStatistics(); | 
 |   void TimeStatistics(double* cost_evaluation_time_in_seconds, | 
 |                       double* gradient_evaluation_time_in_seconds) const; | 
 |   const Vector& position() const { return position_; } | 
 |   const Vector& direction() const { return direction_; } | 
 |  | 
 |  private: | 
 |   Evaluator* evaluator_; | 
 |   Vector position_; | 
 |   Vector direction_; | 
 |  | 
 |   // scaled_direction = x * direction_; | 
 |   Vector scaled_direction_; | 
 |  | 
 |   // We may not exclusively own the evaluator (e.g. in the Trust Region | 
 |   // minimizer), hence we need to save the initial evaluation durations for the | 
 |   // value & gradient to accurately determine the duration of the evaluations | 
 |   // we invoked.  These are reset by a call to ResetTimeStatistics(). | 
 |   double initial_evaluator_residual_time_in_seconds; | 
 |   double initial_evaluator_jacobian_time_in_seconds; | 
 | }; | 
 |  | 
 | // Backtracking and interpolation based Armijo line search. This | 
 | // implementation is based on the Armijo line search that ships in the | 
 | // minFunc package by Mark Schmidt. | 
 | // | 
 | // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html | 
 | class ArmijoLineSearch : public LineSearch { | 
 |  public: | 
 |   explicit ArmijoLineSearch(const LineSearch::Options& options); | 
 |   virtual ~ArmijoLineSearch() {} | 
 |  | 
 |  private: | 
 |   virtual void DoSearch(double step_size_estimate, | 
 |                         double initial_cost, | 
 |                         double initial_gradient, | 
 |                         Summary* summary) const; | 
 | }; | 
 |  | 
 | // Bracketing / Zoom Strong Wolfe condition line search.  This implementation | 
 | // is based on the pseudo-code algorithm presented in Nocedal & Wright [1] | 
 | // (p60-61) with inspiration from the WolfeLineSearch which ships with the | 
 | // minFunc package by Mark Schmidt [2]. | 
 | // | 
 | // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999. | 
 | // [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html. | 
 | class WolfeLineSearch : public LineSearch { | 
 |  public: | 
 |   explicit WolfeLineSearch(const LineSearch::Options& options); | 
 |   virtual ~WolfeLineSearch() {} | 
 |  | 
 |   // Returns true iff either a valid point, or valid bracket are found. | 
 |   bool BracketingPhase(const FunctionSample& initial_position, | 
 |                        const double step_size_estimate, | 
 |                        FunctionSample* bracket_low, | 
 |                        FunctionSample* bracket_high, | 
 |                        bool* perform_zoom_search, | 
 |                        Summary* summary) const; | 
 |   // Returns true iff final_line_sample satisfies strong Wolfe conditions. | 
 |   bool ZoomPhase(const FunctionSample& initial_position, | 
 |                  FunctionSample bracket_low, | 
 |                  FunctionSample bracket_high, | 
 |                  FunctionSample* solution, | 
 |                  Summary* summary) const; | 
 |  | 
 |  private: | 
 |   virtual void DoSearch(double step_size_estimate, | 
 |                         double initial_cost, | 
 |                         double initial_gradient, | 
 |                         Summary* summary) const; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_INTERNAL_LINE_SEARCH_H_ |