|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2016 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_INTERNAL_TRUST_REGION_MINIMIZER_H_ | 
|  | #define CERES_INTERNAL_TRUST_REGION_MINIMIZER_H_ | 
|  |  | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/minimizer.h" | 
|  | #include "ceres/solver.h" | 
|  | #include "ceres/sparse_matrix.h" | 
|  | #include "ceres/trust_region_step_evaluator.h" | 
|  | #include "ceres/trust_region_strategy.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // Generic trust region minimization algorithm. | 
|  | // | 
|  | // For example usage, see SolverImpl::Minimize. | 
|  | class TrustRegionMinimizer : public Minimizer { | 
|  | public: | 
|  | ~TrustRegionMinimizer(); | 
|  |  | 
|  | // This method is not thread safe. | 
|  | virtual void Minimize(const Minimizer::Options& options, | 
|  | double* parameters, | 
|  | Solver::Summary* solver_summary); | 
|  |  | 
|  | private: | 
|  | void Init(const Minimizer::Options& options, | 
|  | double* parameters, | 
|  | Solver::Summary* solver_summary); | 
|  | bool IterationZero(); | 
|  | bool FinalizeIterationAndCheckIfMinimizerCanContinue(); | 
|  | bool ComputeTrustRegionStep(); | 
|  |  | 
|  | bool EvaluateGradientAndJacobian(); | 
|  | void ComputeCandidatePointAndEvaluateCost(); | 
|  |  | 
|  | void DoLineSearch(const Vector& x, | 
|  | const Vector& gradient, | 
|  | const double cost, | 
|  | Vector* delta); | 
|  | void DoInnerIterationsIfNeeded(); | 
|  |  | 
|  | bool ParameterToleranceReached(); | 
|  | bool FunctionToleranceReached(); | 
|  | bool GradientToleranceReached(); | 
|  | bool MaxSolverTimeReached(); | 
|  | bool MaxSolverIterationsReached(); | 
|  | bool MinTrustRegionRadiusReached(); | 
|  |  | 
|  | bool IsStepSuccessful(); | 
|  | void HandleUnsuccessfulStep(); | 
|  | bool HandleSuccessfulStep(); | 
|  | bool HandleInvalidStep(); | 
|  |  | 
|  | Minimizer::Options options_; | 
|  |  | 
|  | // These pointers are shortcuts to objects passed to the | 
|  | // TrustRegionMinimizer. The TrustRegionMinimizer does not own them. | 
|  | double* parameters_; | 
|  | Solver::Summary* solver_summary_; | 
|  | Evaluator* evaluator_; | 
|  | SparseMatrix* jacobian_; | 
|  | TrustRegionStrategy* strategy_; | 
|  |  | 
|  | scoped_ptr<TrustRegionStepEvaluator> step_evaluator_; | 
|  |  | 
|  | bool is_not_silent_; | 
|  | bool inner_iterations_are_enabled_; | 
|  | bool inner_iterations_were_useful_; | 
|  |  | 
|  | // Summary of the current iteration. | 
|  | IterationSummary iteration_summary_; | 
|  |  | 
|  | // Dimensionality of the problem in the ambient space. | 
|  | int num_parameters_; | 
|  | // Dimensionality of the problem in the tangent space. This is the | 
|  | // number of columns in the Jacobian. | 
|  | int num_effective_parameters_; | 
|  | // Length of the residual vector, also the number of rows in the Jacobian. | 
|  | int num_residuals_; | 
|  |  | 
|  | // Current point. | 
|  | Vector x_; | 
|  | // Residuals at x_; | 
|  | Vector residuals_; | 
|  | // Gradient at x_. | 
|  | Vector gradient_; | 
|  | // Solution computed by the inner iterations. | 
|  | Vector inner_iteration_x_; | 
|  | // model_residuals = J * trust_region_step | 
|  | Vector model_residuals_; | 
|  | Vector negative_gradient_; | 
|  | // projected_gradient_step = Plus(x, -gradient), an intermediate | 
|  | // quantity used to compute the projected gradient norm. | 
|  | Vector projected_gradient_step_; | 
|  | // The step computed by the trust region strategy. If Jacobi scaling | 
|  | // is enabled, this is a vector in the scaled space. | 
|  | Vector trust_region_step_; | 
|  | // The current proposal for how far the trust region algorithm | 
|  | // thinks we should move. In the most basic case, it is just the | 
|  | // trust_region_step_ with the Jacobi scaling undone. If bounds | 
|  | // constraints are present, then it is the result of the projected | 
|  | // line search. | 
|  | Vector delta_; | 
|  | // candidate_x  = Plus(x, delta) | 
|  | Vector candidate_x_; | 
|  | // Scaling vector to scale the columns of the Jacobian. | 
|  | Vector jacobian_scaling_; | 
|  |  | 
|  | // Euclidean norm of x_. | 
|  | double x_norm_; | 
|  | // Cost at x_. | 
|  | double x_cost_; | 
|  | // Minimum cost encountered up till now. | 
|  | double minimum_cost_; | 
|  | // How much did the trust region strategy reduce the cost of the | 
|  | // linearized Gauss-Newton model. | 
|  | double model_cost_change_; | 
|  | // Cost at candidate_x_. | 
|  | double candidate_cost_; | 
|  |  | 
|  | // Time at which the minimizer was started. | 
|  | double start_time_in_secs_; | 
|  | // Time at which the current iteration was started. | 
|  | double iteration_start_time_in_secs_; | 
|  | // Number of consecutive steps where the minimizer loop computed a | 
|  | // numerically invalid step. | 
|  | int num_consecutive_invalid_steps_; | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_INTERNAL_TRUST_REGION_MINIMIZER_H_ |