| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/block_jacobi_preconditioner.h" | 
 |  | 
 | #include <memory> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/block_random_access_diagonal_matrix.h" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class BlockJacobiPreconditionerTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUpFromProblemId(int problem_id) { | 
 |     std::unique_ptr<LinearLeastSquaresProblem> problem( | 
 |         CreateLinearLeastSquaresProblemFromId(problem_id)); | 
 |  | 
 |     CHECK(problem != nullptr); | 
 |     A.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); | 
 |     D.reset(problem->D.release()); | 
 |  | 
 |     Matrix dense_a; | 
 |     A->ToDenseMatrix(&dense_a); | 
 |     dense_ata = dense_a.transpose() * dense_a; | 
 |     dense_ata += VectorRef(D.get(), A->num_cols()) | 
 |                      .array() | 
 |                      .square() | 
 |                      .matrix() | 
 |                      .asDiagonal(); | 
 |   } | 
 |  | 
 |   void VerifyDiagonalBlocks(const int problem_id) { | 
 |     SetUpFromProblemId(problem_id); | 
 |  | 
 |     BlockJacobiPreconditioner pre(*A); | 
 |     pre.Update(*A, D.get()); | 
 |     BlockRandomAccessDiagonalMatrix* m = | 
 |         const_cast<BlockRandomAccessDiagonalMatrix*>(&pre.matrix()); | 
 |     EXPECT_EQ(m->num_rows(), A->num_cols()); | 
 |     EXPECT_EQ(m->num_cols(), A->num_cols()); | 
 |  | 
 |     const CompressedRowBlockStructure* bs = A->block_structure(); | 
 |     for (int i = 0; i < bs->cols.size(); ++i) { | 
 |       const int block_size = bs->cols[i].size; | 
 |       int r, c, row_stride, col_stride; | 
 |       CellInfo* cell_info = m->GetCell(i, i, &r, &c, &row_stride, &col_stride); | 
 |       MatrixRef m(cell_info->values, row_stride, col_stride); | 
 |       Matrix actual_block_inverse = m.block(r, c, block_size, block_size); | 
 |       Matrix expected_block = dense_ata.block( | 
 |           bs->cols[i].position, bs->cols[i].position, block_size, block_size); | 
 |       const double residual = (actual_block_inverse * expected_block - | 
 |                                Matrix::Identity(block_size, block_size)) | 
 |                                   .norm(); | 
 |       EXPECT_NEAR(residual, 0.0, 1e-12) << "Block: " << i; | 
 |     } | 
 |   } | 
 |  | 
 |   std::unique_ptr<BlockSparseMatrix> A; | 
 |   std::unique_ptr<double[]> D; | 
 |   Matrix dense_ata; | 
 | }; | 
 |  | 
 | TEST_F(BlockJacobiPreconditionerTest, SmallProblem) { VerifyDiagonalBlocks(2); } | 
 |  | 
 | TEST_F(BlockJacobiPreconditionerTest, LargeProblem) { VerifyDiagonalBlocks(3); } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |