| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/low_rank_inverse_hessian.h" | 
 |  | 
 | #include <list> | 
 |  | 
 | #include "ceres/internal/eigen.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::list; | 
 |  | 
 | // The (L)BFGS algorithm explicitly requires that the secant equation: | 
 | // | 
 | //   B_{k+1} * s_k = y_k | 
 | // | 
 | // Is satisfied at each iteration, where B_{k+1} is the approximated | 
 | // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and | 
 | // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be | 
 | // positive definite, this is equivalent to the condition: | 
 | // | 
 | //   s_k^T * y_k > 0     [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0] | 
 | // | 
 | // This condition would always be satisfied if the function was strictly | 
 | // convex, alternatively, it is always satisfied provided that a Wolfe line | 
 | // search is used (even if the function is not strictly convex).  See [1] | 
 | // (p138) for a proof. | 
 | // | 
 | // Although Ceres will always use a Wolfe line search when using (L)BFGS, | 
 | // practical implementation considerations mean that the line search | 
 | // may return a point that satisfies only the Armijo condition, and thus | 
 | // could violate the Secant equation.  As such, we will only use a step | 
 | // to update the Hessian approximation if: | 
 | // | 
 | //   s_k^T * y_k > tolerance | 
 | // | 
 | // It is important that tolerance is very small (and >=0), as otherwise we | 
 | // might skip the update too often and fail to capture important curvature | 
 | // information in the Hessian.  For example going from 1e-10 -> 1e-14 improves | 
 | // the NIST benchmark score from 43/54 to 53/54. | 
 | // | 
 | // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed. Springer, 1999. | 
 | // | 
 | // TODO(alexs.mac): Consider using Damped BFGS update instead of | 
 | // skipping update. | 
 | const double kLBFGSSecantConditionHessianUpdateTolerance = 1e-14; | 
 |  | 
 | LowRankInverseHessian::LowRankInverseHessian( | 
 |     int num_parameters, | 
 |     int max_num_corrections, | 
 |     bool use_approximate_eigenvalue_scaling) | 
 |     : num_parameters_(num_parameters), | 
 |       max_num_corrections_(max_num_corrections), | 
 |       use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling), | 
 |       approximate_eigenvalue_scale_(1.0), | 
 |       delta_x_history_(num_parameters, max_num_corrections), | 
 |       delta_gradient_history_(num_parameters, max_num_corrections), | 
 |       delta_x_dot_delta_gradient_(max_num_corrections) {} | 
 |  | 
 | bool LowRankInverseHessian::Update(const Vector& delta_x, | 
 |                                    const Vector& delta_gradient) { | 
 |   const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient); | 
 |   if (delta_x_dot_delta_gradient <= | 
 |       kLBFGSSecantConditionHessianUpdateTolerance) { | 
 |     VLOG(2) << "Skipping L-BFGS Update, delta_x_dot_delta_gradient too " | 
 |             << "small: " << delta_x_dot_delta_gradient | 
 |             << ", tolerance: " << kLBFGSSecantConditionHessianUpdateTolerance | 
 |             << " (Secant condition)."; | 
 |     return false; | 
 |   } | 
 |  | 
 |   int next = indices_.size(); | 
 |   // Once the size of the list reaches max_num_corrections_, simulate | 
 |   // a circular buffer by removing the first element of the list and | 
 |   // making it the next position where the LBFGS history is stored. | 
 |   if (next == max_num_corrections_) { | 
 |     next = indices_.front(); | 
 |     indices_.pop_front(); | 
 |   } | 
 |  | 
 |   indices_.push_back(next); | 
 |   delta_x_history_.col(next) = delta_x; | 
 |   delta_gradient_history_.col(next) = delta_gradient; | 
 |   delta_x_dot_delta_gradient_(next) = delta_x_dot_delta_gradient; | 
 |   approximate_eigenvalue_scale_ = | 
 |       delta_x_dot_delta_gradient / delta_gradient.squaredNorm(); | 
 |   return true; | 
 | } | 
 |  | 
 | void LowRankInverseHessian::RightMultiply(const double* x_ptr, | 
 |                                           double* y_ptr) const { | 
 |   ConstVectorRef gradient(x_ptr, num_parameters_); | 
 |   VectorRef search_direction(y_ptr, num_parameters_); | 
 |  | 
 |   search_direction = gradient; | 
 |  | 
 |   const int num_corrections = indices_.size(); | 
 |   Vector alpha(num_corrections); | 
 |  | 
 |   for (list<int>::const_reverse_iterator it = indices_.rbegin(); | 
 |        it != indices_.rend(); | 
 |        ++it) { | 
 |     const double alpha_i = delta_x_history_.col(*it).dot(search_direction) / | 
 |                            delta_x_dot_delta_gradient_(*it); | 
 |     search_direction -= alpha_i * delta_gradient_history_.col(*it); | 
 |     alpha(*it) = alpha_i; | 
 |   } | 
 |  | 
 |   if (use_approximate_eigenvalue_scaling_) { | 
 |     // Rescale the initial inverse Hessian approximation (H_0) to be iteratively | 
 |     // updated so that it is of similar 'size' to the true inverse Hessian along | 
 |     // the most recent search direction.  As shown in [1]: | 
 |     // | 
 |     //   \gamma_k = (delta_gradient_{k-1}' * delta_x_{k-1}) / | 
 |     //              (delta_gradient_{k-1}' * delta_gradient_{k-1}) | 
 |     // | 
 |     // Satisfies: | 
 |     // | 
 |     //   (1 / \lambda_m) <= \gamma_k <= (1 / \lambda_1) | 
 |     // | 
 |     // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of | 
 |     // the true Hessian (not the inverse) along the most recent search direction | 
 |     // respectively.  Thus \gamma is an approximate eigenvalue of the true | 
 |     // inverse Hessian, and choosing: H_0 = I * \gamma will yield a starting | 
 |     // point that has a similar scale to the true inverse Hessian.  This | 
 |     // technique is widely reported to often improve convergence, however this | 
 |     // is not universally true, particularly if there are errors in the initial | 
 |     // jacobians, or if there are significant differences in the sensitivity | 
 |     // of the problem to the parameters (i.e. the range of the magnitudes of | 
 |     // the components of the gradient is large). | 
 |     // | 
 |     // The original origin of this rescaling trick is somewhat unclear, the | 
 |     // earliest reference appears to be Oren [1], however it is widely discussed | 
 |     // without specific attributation in various texts including [2] (p143/178). | 
 |     // | 
 |     // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms Part II: | 
 |     //     Implementation and experiments, Management Science, | 
 |     //     20(5), 863-874, 1974. | 
 |     // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999. | 
 |     search_direction *= approximate_eigenvalue_scale_; | 
 |  | 
 |     VLOG(4) << "Applying approximate_eigenvalue_scale: " | 
 |             << approximate_eigenvalue_scale_ << " to initial inverse Hessian " | 
 |             << "approximation."; | 
 |   } | 
 |  | 
 |   for (const int i : indices_) { | 
 |     const double beta = delta_gradient_history_.col(i).dot(search_direction) / | 
 |                         delta_x_dot_delta_gradient_(i); | 
 |     search_direction += delta_x_history_.col(i) * (alpha(i) - beta); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |