| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/compressed_row_sparse_matrix.h" |
| |
| #include <numeric> |
| #include "ceres/casts.h" |
| #include "ceres/crs_matrix.h" |
| #include "ceres/cxsparse.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/linear_least_squares_problems.h" |
| #include "ceres/random.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| using std::vector; |
| |
| void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { |
| EXPECT_EQ(a->num_rows(), b->num_rows()); |
| EXPECT_EQ(a->num_cols(), b->num_cols()); |
| |
| int num_rows = a->num_rows(); |
| int num_cols = a->num_cols(); |
| |
| for (int i = 0; i < num_cols; ++i) { |
| Vector x = Vector::Zero(num_cols); |
| x(i) = 1.0; |
| |
| Vector y_a = Vector::Zero(num_rows); |
| Vector y_b = Vector::Zero(num_rows); |
| |
| a->RightMultiply(x.data(), y_a.data()); |
| b->RightMultiply(x.data(), y_b.data()); |
| |
| EXPECT_EQ((y_a - y_b).norm(), 0); |
| } |
| } |
| |
| class CompressedRowSparseMatrixTest : public ::testing::Test { |
| protected : |
| virtual void SetUp() { |
| scoped_ptr<LinearLeastSquaresProblem> problem( |
| CreateLinearLeastSquaresProblemFromId(1)); |
| |
| CHECK_NOTNULL(problem.get()); |
| |
| tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); |
| crsm.reset(new CompressedRowSparseMatrix(*tsm)); |
| |
| num_rows = tsm->num_rows(); |
| num_cols = tsm->num_cols(); |
| |
| vector<int>* row_blocks = crsm->mutable_row_blocks(); |
| row_blocks->resize(num_rows); |
| std::fill(row_blocks->begin(), row_blocks->end(), 1); |
| |
| vector<int>* col_blocks = crsm->mutable_col_blocks(); |
| col_blocks->resize(num_cols); |
| std::fill(col_blocks->begin(), col_blocks->end(), 1); |
| } |
| |
| int num_rows; |
| int num_cols; |
| |
| scoped_ptr<TripletSparseMatrix> tsm; |
| scoped_ptr<CompressedRowSparseMatrix> crsm; |
| }; |
| |
| TEST_F(CompressedRowSparseMatrixTest, RightMultiply) { |
| CompareMatrices(tsm.get(), crsm.get()); |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, LeftMultiply) { |
| for (int i = 0; i < num_rows; ++i) { |
| Vector a = Vector::Zero(num_rows); |
| a(i) = 1.0; |
| |
| Vector b1 = Vector::Zero(num_cols); |
| Vector b2 = Vector::Zero(num_cols); |
| |
| tsm->LeftMultiply(a.data(), b1.data()); |
| crsm->LeftMultiply(a.data(), b2.data()); |
| |
| EXPECT_EQ((b1 - b2).norm(), 0); |
| } |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, ColumnNorm) { |
| Vector b1 = Vector::Zero(num_cols); |
| Vector b2 = Vector::Zero(num_cols); |
| |
| tsm->SquaredColumnNorm(b1.data()); |
| crsm->SquaredColumnNorm(b2.data()); |
| |
| EXPECT_EQ((b1 - b2).norm(), 0); |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, Scale) { |
| Vector scale(num_cols); |
| for (int i = 0; i < num_cols; ++i) { |
| scale(i) = i + 1; |
| } |
| |
| tsm->ScaleColumns(scale.data()); |
| crsm->ScaleColumns(scale.data()); |
| CompareMatrices(tsm.get(), crsm.get()); |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, DeleteRows) { |
| // Clear the row and column blocks as these are purely scalar tests. |
| crsm->mutable_row_blocks()->clear(); |
| crsm->mutable_col_blocks()->clear(); |
| for (int i = 0; i < num_rows; ++i) { |
| tsm->Resize(num_rows - i, num_cols); |
| crsm->DeleteRows(crsm->num_rows() - tsm->num_rows()); |
| CompareMatrices(tsm.get(), crsm.get()); |
| } |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, AppendRows) { |
| // Clear the row and column blocks as these are purely scalar tests. |
| crsm->mutable_row_blocks()->clear(); |
| crsm->mutable_col_blocks()->clear(); |
| |
| for (int i = 0; i < num_rows; ++i) { |
| TripletSparseMatrix tsm_appendage(*tsm); |
| tsm_appendage.Resize(i, num_cols); |
| |
| tsm->AppendRows(tsm_appendage); |
| CompressedRowSparseMatrix crsm_appendage(tsm_appendage); |
| crsm->AppendRows(crsm_appendage); |
| |
| CompareMatrices(tsm.get(), crsm.get()); |
| } |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) { |
| int num_diagonal_rows = crsm->num_cols(); |
| |
| scoped_array<double> diagonal(new double[num_diagonal_rows]); |
| for (int i = 0; i < num_diagonal_rows; ++i) { |
| diagonal[i] = i; |
| } |
| |
| vector<int> row_and_column_blocks; |
| row_and_column_blocks.push_back(1); |
| row_and_column_blocks.push_back(2); |
| row_and_column_blocks.push_back(2); |
| |
| const vector<int> pre_row_blocks = crsm->row_blocks(); |
| const vector<int> pre_col_blocks = crsm->col_blocks(); |
| |
| scoped_ptr<CompressedRowSparseMatrix> appendage( |
| CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( |
| diagonal.get(), row_and_column_blocks)); |
| LOG(INFO) << appendage->row_blocks().size(); |
| |
| crsm->AppendRows(*appendage); |
| |
| const vector<int> post_row_blocks = crsm->row_blocks(); |
| const vector<int> post_col_blocks = crsm->col_blocks(); |
| |
| vector<int> expected_row_blocks = pre_row_blocks; |
| expected_row_blocks.insert(expected_row_blocks.end(), |
| row_and_column_blocks.begin(), |
| row_and_column_blocks.end()); |
| |
| vector<int> expected_col_blocks = pre_col_blocks; |
| |
| EXPECT_EQ(expected_row_blocks, crsm->row_blocks()); |
| EXPECT_EQ(expected_col_blocks, crsm->col_blocks()); |
| |
| crsm->DeleteRows(num_diagonal_rows); |
| EXPECT_EQ(crsm->row_blocks(), pre_row_blocks); |
| EXPECT_EQ(crsm->col_blocks(), pre_col_blocks); |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) { |
| Matrix tsm_dense; |
| Matrix crsm_dense; |
| |
| tsm->ToDenseMatrix(&tsm_dense); |
| crsm->ToDenseMatrix(&crsm_dense); |
| |
| EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0); |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) { |
| CRSMatrix crs_matrix; |
| crsm->ToCRSMatrix(&crs_matrix); |
| EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows); |
| EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols); |
| EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size()); |
| EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size()); |
| EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size()); |
| |
| for (int i = 0; i < crsm->num_rows() + 1; ++i) { |
| EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]); |
| } |
| |
| for (int i = 0; i < crsm->num_nonzeros(); ++i) { |
| EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]); |
| EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]); |
| } |
| } |
| |
| TEST(CompressedRowSparseMatrix, CreateBlockDiagonalMatrix) { |
| vector<int> blocks; |
| blocks.push_back(1); |
| blocks.push_back(2); |
| blocks.push_back(2); |
| |
| Vector diagonal(5); |
| for (int i = 0; i < 5; ++i) { |
| diagonal(i) = i + 1; |
| } |
| |
| scoped_ptr<CompressedRowSparseMatrix> matrix( |
| CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( |
| diagonal.data(), blocks)); |
| |
| EXPECT_EQ(matrix->num_rows(), 5); |
| EXPECT_EQ(matrix->num_cols(), 5); |
| EXPECT_EQ(matrix->num_nonzeros(), 9); |
| EXPECT_EQ(blocks, matrix->row_blocks()); |
| EXPECT_EQ(blocks, matrix->col_blocks()); |
| |
| Vector x(5); |
| Vector y(5); |
| |
| x.setOnes(); |
| y.setZero(); |
| matrix->RightMultiply(x.data(), y.data()); |
| for (int i = 0; i < diagonal.size(); ++i) { |
| EXPECT_EQ(y[i], diagonal[i]); |
| } |
| |
| y.setZero(); |
| matrix->LeftMultiply(x.data(), y.data()); |
| for (int i = 0; i < diagonal.size(); ++i) { |
| EXPECT_EQ(y[i], diagonal[i]); |
| } |
| |
| Matrix dense; |
| matrix->ToDenseMatrix(&dense); |
| EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0); |
| } |
| |
| class SolveLowerTriangularTest : public ::testing::Test { |
| protected: |
| void SetUp() { |
| matrix_.reset(new CompressedRowSparseMatrix(4, 4, 7)); |
| int* rows = matrix_->mutable_rows(); |
| int* cols = matrix_->mutable_cols(); |
| double* values = matrix_->mutable_values(); |
| |
| rows[0] = 0; |
| cols[0] = 0; |
| values[0] = 0.50754; |
| |
| rows[1] = 1; |
| cols[1] = 1; |
| values[1] = 0.80483; |
| |
| rows[2] = 2; |
| cols[2] = 1; |
| values[2] = 0.14120; |
| cols[3] = 2; |
| values[3] = 0.3; |
| |
| rows[3] = 4; |
| cols[4] = 0; |
| values[4] = 0.77696; |
| cols[5] = 1; |
| values[5] = 0.41860; |
| cols[6] = 3; |
| values[6] = 0.88979; |
| |
| rows[4] = 7; |
| } |
| |
| scoped_ptr<CompressedRowSparseMatrix> matrix_; |
| }; |
| |
| TEST_F(SolveLowerTriangularTest, SolveInPlace) { |
| double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; |
| double expected[] = {1.970288, 1.242498, 6.081864, -0.057255}; |
| matrix_->SolveLowerTriangularInPlace(rhs_and_solution); |
| for (int i = 0; i < 4; ++i) { |
| EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; |
| } |
| } |
| |
| TEST_F(SolveLowerTriangularTest, TransposeSolveInPlace) { |
| double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; |
| const double expected[] = { -1.4706, -1.0962, 6.6667, 2.2477}; |
| |
| matrix_->SolveLowerTriangularTransposeInPlace(rhs_and_solution); |
| for (int i = 0; i < 4; ++i) { |
| EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; |
| } |
| } |
| |
| TEST(CompressedRowSparseMatrix, Transpose) { |
| // 0 1 0 2 3 0 |
| // 4 6 7 0 0 8 |
| // 9 10 0 11 12 0 |
| // 13 0 14 15 9 0 |
| // 0 16 17 0 0 0 |
| |
| // Block structure: |
| // A A A A B B |
| // A A A A B B |
| // A A A A B B |
| // C C C C D D |
| // C C C C D D |
| // C C C C D D |
| |
| CompressedRowSparseMatrix matrix(5, 6, 30); |
| int* rows = matrix.mutable_rows(); |
| int* cols = matrix.mutable_cols(); |
| double* values = matrix.mutable_values(); |
| matrix.mutable_row_blocks()->push_back(3); |
| matrix.mutable_row_blocks()->push_back(3); |
| matrix.mutable_col_blocks()->push_back(4); |
| matrix.mutable_col_blocks()->push_back(2); |
| |
| rows[0] = 0; |
| cols[0] = 1; |
| cols[1] = 3; |
| cols[2] = 4; |
| |
| rows[1] = 3; |
| cols[3] = 0; |
| cols[4] = 1; |
| cols[5] = 2; |
| cols[6] = 5; |
| |
| |
| rows[2] = 7; |
| cols[7] = 0; |
| cols[8] = 1; |
| cols[9] = 3; |
| cols[10] = 4; |
| |
| rows[3] = 11; |
| cols[11] = 0; |
| cols[12] = 2; |
| cols[13] = 3; |
| cols[14] = 4; |
| |
| rows[4] = 15; |
| cols[15] = 1; |
| cols[16] = 2; |
| rows[5] = 17; |
| |
| std::copy(values, values + 17, cols); |
| |
| scoped_ptr<CompressedRowSparseMatrix> transpose(matrix.Transpose()); |
| |
| ASSERT_EQ(transpose->row_blocks().size(), matrix.col_blocks().size()); |
| for (int i = 0; i < transpose->row_blocks().size(); ++i) { |
| EXPECT_EQ(transpose->row_blocks()[i], matrix.col_blocks()[i]); |
| } |
| |
| ASSERT_EQ(transpose->col_blocks().size(), matrix.row_blocks().size()); |
| for (int i = 0; i < transpose->col_blocks().size(); ++i) { |
| EXPECT_EQ(transpose->col_blocks()[i], matrix.row_blocks()[i]); |
| } |
| |
| Matrix dense_matrix; |
| matrix.ToDenseMatrix(&dense_matrix); |
| |
| Matrix dense_transpose; |
| transpose->ToDenseMatrix(&dense_transpose); |
| EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14); |
| } |
| |
| #ifndef CERES_NO_CXSPARSE |
| |
| struct RandomMatrixOptions { |
| int num_row_blocks; |
| int min_row_block_size; |
| int max_row_block_size; |
| int num_col_blocks; |
| int min_col_block_size; |
| int max_col_block_size; |
| double block_density; |
| }; |
| |
| CompressedRowSparseMatrix* CreateRandomCompressedRowSparseMatrix( |
| const RandomMatrixOptions& options) { |
| vector<int> row_blocks; |
| for (int i = 0; i < options.num_row_blocks; ++i) { |
| const int delta_block_size = |
| Uniform(options.max_row_block_size - options.min_row_block_size); |
| row_blocks.push_back(options.min_row_block_size + delta_block_size); |
| } |
| |
| vector<int> col_blocks; |
| for (int i = 0; i < options.num_col_blocks; ++i) { |
| const int delta_block_size = |
| Uniform(options.max_col_block_size - options.min_col_block_size); |
| col_blocks.push_back(options.min_col_block_size + delta_block_size); |
| } |
| |
| vector<int> rows; |
| vector<int> cols; |
| vector<double> values; |
| |
| while (values.size() == 0) { |
| int row_block_begin = 0; |
| for (int r = 0; r < options.num_row_blocks; ++r) { |
| int col_block_begin = 0; |
| for (int c = 0; c < options.num_col_blocks; ++c) { |
| if (RandDouble() <= options.block_density) { |
| for (int i = 0; i < row_blocks[r]; ++i) { |
| for (int j = 0; j < col_blocks[c]; ++j) { |
| rows.push_back(row_block_begin + i); |
| cols.push_back(col_block_begin + j); |
| values.push_back(RandNormal()); |
| } |
| } |
| } |
| col_block_begin += col_blocks[c]; |
| } |
| row_block_begin += row_blocks[r]; |
| } |
| } |
| |
| const int num_rows = std::accumulate(row_blocks.begin(), row_blocks.end(), 0); |
| const int num_cols = std::accumulate(col_blocks.begin(), col_blocks.end(), 0); |
| const int num_nonzeros = values.size(); |
| |
| TripletSparseMatrix tsm(num_rows, num_cols, num_nonzeros); |
| std::copy(rows.begin(), rows.end(), tsm.mutable_rows()); |
| std::copy(cols.begin(), cols.end(), tsm.mutable_cols()); |
| std::copy(values.begin(), values.end(), tsm.mutable_values()); |
| tsm.set_num_nonzeros(num_nonzeros); |
| CompressedRowSparseMatrix* matrix = new CompressedRowSparseMatrix(tsm); |
| (*matrix->mutable_row_blocks()) = row_blocks; |
| (*matrix->mutable_col_blocks()) = col_blocks; |
| return matrix; |
| } |
| |
| void ToDenseMatrix(const cs_di* matrix, Matrix* dense_matrix) { |
| dense_matrix->resize(matrix->m, matrix->n); |
| dense_matrix->setZero(); |
| |
| for (int c = 0; c < matrix->n; ++c) { |
| for (int idx = matrix->p[c]; idx < matrix->p[c + 1]; ++idx) { |
| const int r = matrix->i[idx]; |
| (*dense_matrix)(r, c) = matrix->x[idx]; |
| } |
| } |
| } |
| |
| TEST(CompressedRowSparseMatrix, ComputeOuterProduct) { |
| // "Randomly generated seed." |
| SetRandomState(29823); |
| int kMaxNumRowBlocks = 10; |
| int kMaxNumColBlocks = 10; |
| int kNumTrials = 10; |
| |
| CXSparse cxsparse; |
| const double kTolerance = 1e-18; |
| |
| // Create a random matrix, compute its outer product using CXSParse |
| // and ComputeOuterProduct. Convert both matrices to dense matrices |
| // and compare their upper triangular parts. They should be within |
| // kTolerance of each other. |
| for (int num_row_blocks = 1; |
| num_row_blocks < kMaxNumRowBlocks; |
| ++num_row_blocks) { |
| for (int num_col_blocks = 1; |
| num_col_blocks < kMaxNumColBlocks; |
| ++num_col_blocks) { |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| RandomMatrixOptions options; |
| options.num_row_blocks = num_row_blocks; |
| options.num_col_blocks = num_col_blocks; |
| options.min_row_block_size = 1; |
| options.max_row_block_size = 5; |
| options.min_col_block_size = 1; |
| options.max_col_block_size = 10; |
| options.block_density = std::max(0.1, RandDouble()); |
| |
| VLOG(2) << "num row blocks: " << options.num_row_blocks; |
| VLOG(2) << "num col blocks: " << options.num_col_blocks; |
| VLOG(2) << "min row block size: " << options.min_row_block_size; |
| VLOG(2) << "max row block size: " << options.max_row_block_size; |
| VLOG(2) << "min col block size: " << options.min_col_block_size; |
| VLOG(2) << "max col block size: " << options.max_col_block_size; |
| VLOG(2) << "block density: " << options.block_density; |
| |
| scoped_ptr<CompressedRowSparseMatrix> matrix( |
| CreateRandomCompressedRowSparseMatrix(options)); |
| |
| cs_di cs_matrix_transpose = |
| cxsparse.CreateSparseMatrixTransposeView(matrix.get()); |
| cs_di* cs_matrix = cxsparse.TransposeMatrix(&cs_matrix_transpose); |
| cs_di* expected_outer_product = |
| cxsparse.MatrixMatrixMultiply(&cs_matrix_transpose, cs_matrix); |
| |
| vector<int> program; |
| scoped_ptr<CompressedRowSparseMatrix> outer_product( |
| CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram( |
| *matrix, &program)); |
| CompressedRowSparseMatrix::ComputeOuterProduct(*matrix, |
| program, |
| outer_product.get()); |
| |
| cs_di actual_outer_product = |
| cxsparse.CreateSparseMatrixTransposeView(outer_product.get()); |
| |
| ASSERT_EQ(actual_outer_product.m, actual_outer_product.n); |
| ASSERT_EQ(expected_outer_product->m, expected_outer_product->n); |
| ASSERT_EQ(actual_outer_product.m, expected_outer_product->m); |
| |
| Matrix actual_matrix; |
| Matrix expected_matrix; |
| |
| ToDenseMatrix(expected_outer_product, &expected_matrix); |
| expected_matrix.triangularView<Eigen::StrictlyLower>().setZero(); |
| |
| ToDenseMatrix(&actual_outer_product, &actual_matrix); |
| const double diff_norm = |
| (actual_matrix - expected_matrix).norm() / expected_matrix.norm(); |
| ASSERT_NEAR(diff_norm, 0.0, kTolerance) |
| << "expected: \n" |
| << expected_matrix |
| << "\nactual: \n" |
| << actual_matrix; |
| |
| cxsparse.Free(cs_matrix); |
| cxsparse.Free(expected_outer_product); |
| } |
| } |
| } |
| } |
| |
| #endif // CERES_NO_CXSPARSE |
| |
| } // namespace internal |
| } // namespace ceres |