| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: mierle@gmail.com (Keir Mierle) | 
 | // | 
 | // WARNING WARNING WARNING | 
 | // WARNING WARNING WARNING  Tiny solver is experimental and will change. | 
 | // WARNING WARNING WARNING | 
 |  | 
 | #ifndef CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ | 
 | #define CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ | 
 |  | 
 | #include "Eigen/Core" | 
 |  | 
 | #include "ceres/jet.h" | 
 | #include "ceres/types.h"  // For kImpossibleValue. | 
 |  | 
 | namespace ceres { | 
 |  | 
 | // An adapter around autodiff-style CostFunctors to enable easier use of | 
 | // TinySolver. See the example below showing how to use it: | 
 | // | 
 | //   // Same as an autodiff cost functor, but taking only 1 parameter. | 
 | //   struct MyFunctor { | 
 | //     template<typename T> | 
 | //     bool operator()(const T* const parameters, T* residuals) const { | 
 | //       const T& x = parameters[0]; | 
 | //       const T& y = parameters[1]; | 
 | //       const T& z = parameters[2]; | 
 | //       residuals[0] = x + 2.*y + 4.*z; | 
 | //       residuals[1] = y * z; | 
 | //       return true; | 
 | //     } | 
 | //   }; | 
 | // | 
 | //   typedef TinySolverAutoDiffFunction<MyFunctor, 2, 3> | 
 | //       AutoDiffFunction; | 
 | // | 
 | //   MyFunctor my_functor; | 
 | //   AutoDiffFunction f(my_functor); | 
 | // | 
 | //   Vec3 x = ...; | 
 | //   TinySolver<AutoDiffFunction> solver; | 
 | //   solver.Solve(f, &x); | 
 | // | 
 | // WARNING: The cost function adapter is not thread safe. | 
 | template<typename CostFunctor, | 
 |          int kNumResiduals, | 
 |          int kNumParameters, | 
 |          typename T = double> | 
 | class TinySolverAutoDiffFunction { | 
 |  public: | 
 |    TinySolverAutoDiffFunction(const CostFunctor& cost_functor) | 
 |      : cost_functor_(cost_functor) {} | 
 |  | 
 |   typedef T Scalar; | 
 |   enum { | 
 |     NUM_PARAMETERS = kNumParameters, | 
 |     NUM_RESIDUALS = kNumResiduals, | 
 |   }; | 
 |  | 
 |   // This is similar to AutoDiff::Differentiate(), but since there is only one | 
 |   // parameter block it is easier to inline to avoid overhead. | 
 |   bool operator()(const T* parameters, | 
 |                   T* residuals, | 
 |                   T* jacobian) const { | 
 |     if (jacobian == NULL) { | 
 |       // No jacobian requested, so just directly call the cost function with | 
 |       // doubles, skipping jets and derivatives. | 
 |       return cost_functor_(parameters, residuals); | 
 |     } | 
 |     // Initialize the input jets with passed parameters. | 
 |     for (int i = 0; i < kNumParameters; ++i) { | 
 |       jet_parameters_[i].a = parameters[i];  // Scalar part. | 
 |       jet_parameters_[i].v.setZero();        // Derivative part. | 
 |       jet_parameters_[i].v[i] = T(1.0); | 
 |     } | 
 |  | 
 |     // Initialize the output jets such that we can detect user errors. | 
 |     for (int i = 0; i < kNumResiduals; ++i) { | 
 |       jet_residuals_[i].a = kImpossibleValue; | 
 |       jet_residuals_[i].v.setConstant(kImpossibleValue); | 
 |     } | 
 |  | 
 |     // Execute the cost function, but with jets to find the derivative. | 
 |     if (!cost_functor_(jet_parameters_, jet_residuals_)) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Copy the jacobian out of the derivative part of the residual jets. | 
 |     Eigen::Map<Eigen::Matrix<T, | 
 |                              kNumResiduals, | 
 |                              kNumParameters> > jacobian_matrix(jacobian); | 
 |     for (int r = 0; r < kNumResiduals; ++r) { | 
 |       residuals[r] = jet_residuals_[r].a; | 
 |       // Note that while this looks like a fast vectorized write, in practice it | 
 |       // unfortunately thrashes the cache since the writes to the column-major | 
 |       // jacobian are strided (e.g. rows are non-contiguous). | 
 |       jacobian_matrix.row(r) = jet_residuals_[r].v; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   const CostFunctor& cost_functor_; | 
 |  | 
 |   // To evaluate the cost function with jets, temporary storage is needed. These | 
 |   // are the buffers that are used during evaluation; parameters for the input, | 
 |   // and jet_residuals_ are where the final cost and derivatives end up. | 
 |   // | 
 |   // Since this buffer is used for evaluation, the adapter is not thread safe. | 
 |   mutable Jet<T, kNumParameters> jet_parameters_[kNumParameters]; | 
 |   mutable Jet<T, kNumParameters> jet_residuals_[kNumResiduals]; | 
 | }; | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ |