| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #ifndef CERES_INTERNAL_INVERT_PSD_MATRIX_H_ | 
 | #define CERES_INTERNAL_INVERT_PSD_MATRIX_H_ | 
 |  | 
 | #include "ceres/internal/eigen.h" | 
 | #include "glog/logging.h" | 
 | #include "Eigen/Dense" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // Helper routine to compute the inverse or pseudo-inverse of a | 
 | // symmetric positive semi-definite matrix. | 
 | // | 
 | // assume_full_rank controls whether a Cholesky factorization or an | 
 | // Singular Value Decomposition is used to compute the inverse and the | 
 | // pseudo-inverse respectively. | 
 | // | 
 | // The template parameter kSize can either be Eigen::Dynamic or a | 
 | // positive integer equal to the number of rows of m. | 
 | template <int kSize> | 
 | typename EigenTypes<kSize, kSize>::Matrix InvertPSDMatrix( | 
 |     const bool assume_full_rank, | 
 |     const typename EigenTypes<kSize, kSize>::Matrix& m) { | 
 |   const int size = m.rows(); | 
 |  | 
 |   // If the matrix can be assumed to be full rank, then just use the | 
 |   // Cholesky factorization to invert it. | 
 |   if (assume_full_rank) { | 
 |     return m.template selfadjointView<Eigen::Upper>().llt().solve( | 
 |         Matrix::Identity(size, size)); | 
 |   } | 
 |  | 
 |   Eigen::JacobiSVD<Matrix> svd(m, Eigen::ComputeThinU | Eigen::ComputeThinV); | 
 |   const double tolerance = | 
 |       std::numeric_limits<double>::epsilon() * size * svd.singularValues()(0); | 
 |  | 
 |   return svd.matrixV() * | 
 |          (svd.singularValues().array() > tolerance) | 
 |              .select(svd.singularValues().array().inverse(), 0) | 
 |              .matrix() | 
 |              .asDiagonal() * | 
 |          svd.matrixU().adjoint(); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif // CERES_INTERNAL_INVERT_PSD_MATRIX_H_ |