|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | //         sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/solver.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <sstream>   // NOLINT | 
|  | #include <vector> | 
|  | #include "ceres/detect_structure.h" | 
|  | #include "ceres/gradient_checking_cost_function.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/parameter_block_ordering.h" | 
|  | #include "ceres/preprocessor.h" | 
|  | #include "ceres/problem.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/schur_templates.h" | 
|  | #include "ceres/solver_utils.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/types.h" | 
|  | #include "ceres/wall_time.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace { | 
|  |  | 
|  | using std::map; | 
|  | using std::string; | 
|  | using std::vector; | 
|  |  | 
|  | #define OPTION_OP(x, y, OP)                                             \ | 
|  | if (!(options.x OP y)) {                                              \ | 
|  | std::stringstream ss;                                               \ | 
|  | ss << "Invalid configuration. ";                                    \ | 
|  | ss << string("Solver::Options::" #x " = ") << options.x << ". ";    \ | 
|  | ss << "Violated constraint: ";                                      \ | 
|  | ss << string("Solver::Options::" #x " " #OP " "#y);                 \ | 
|  | *error = ss.str();                                                  \ | 
|  | return false;                                                       \ | 
|  | } | 
|  |  | 
|  | #define OPTION_OP_OPTION(x, y, OP)                                      \ | 
|  | if (!(options.x OP options.y)) {                                      \ | 
|  | std::stringstream ss;                                               \ | 
|  | ss << "Invalid configuration. ";                                    \ | 
|  | ss << string("Solver::Options::" #x " = ") << options.x << ". ";    \ | 
|  | ss << string("Solver::Options::" #y " = ") << options.y << ". ";    \ | 
|  | ss << "Violated constraint: ";                                      \ | 
|  | ss << string("Solver::Options::" #x);                               \ | 
|  | ss << string(#OP " Solver::Options::" #y ".");                      \ | 
|  | *error = ss.str();                                                  \ | 
|  | return false;                                                       \ | 
|  | } | 
|  |  | 
|  | #define OPTION_GE(x, y) OPTION_OP(x, y, >=); | 
|  | #define OPTION_GT(x, y) OPTION_OP(x, y, >); | 
|  | #define OPTION_LE(x, y) OPTION_OP(x, y, <=); | 
|  | #define OPTION_LT(x, y) OPTION_OP(x, y, <); | 
|  | #define OPTION_LE_OPTION(x, y) OPTION_OP_OPTION(x, y, <=) | 
|  | #define OPTION_LT_OPTION(x, y) OPTION_OP_OPTION(x, y, <) | 
|  |  | 
|  | bool CommonOptionsAreValid(const Solver::Options& options, string* error) { | 
|  | OPTION_GE(max_num_iterations, 0); | 
|  | OPTION_GE(max_solver_time_in_seconds, 0.0); | 
|  | OPTION_GE(function_tolerance, 0.0); | 
|  | OPTION_GE(gradient_tolerance, 0.0); | 
|  | OPTION_GE(parameter_tolerance, 0.0); | 
|  | OPTION_GT(num_threads, 0); | 
|  | OPTION_GT(num_linear_solver_threads, 0); | 
|  | if (options.check_gradients) { | 
|  | OPTION_GT(gradient_check_relative_precision, 0.0); | 
|  | OPTION_GT(gradient_check_numeric_derivative_relative_step_size, 0.0); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TrustRegionOptionsAreValid(const Solver::Options& options, string* error) { | 
|  | OPTION_GT(initial_trust_region_radius, 0.0); | 
|  | OPTION_GT(min_trust_region_radius, 0.0); | 
|  | OPTION_GT(max_trust_region_radius, 0.0); | 
|  | OPTION_LE_OPTION(min_trust_region_radius, max_trust_region_radius); | 
|  | OPTION_LE_OPTION(min_trust_region_radius, initial_trust_region_radius); | 
|  | OPTION_LE_OPTION(initial_trust_region_radius, max_trust_region_radius); | 
|  | OPTION_GE(min_relative_decrease, 0.0); | 
|  | OPTION_GE(min_lm_diagonal, 0.0); | 
|  | OPTION_GE(max_lm_diagonal, 0.0); | 
|  | OPTION_LE_OPTION(min_lm_diagonal, max_lm_diagonal); | 
|  | OPTION_GE(max_num_consecutive_invalid_steps, 0); | 
|  | OPTION_GT(eta, 0.0); | 
|  | OPTION_GE(min_linear_solver_iterations, 0); | 
|  | OPTION_GE(max_linear_solver_iterations, 1); | 
|  | OPTION_LE_OPTION(min_linear_solver_iterations, max_linear_solver_iterations); | 
|  |  | 
|  | if (options.use_inner_iterations) { | 
|  | OPTION_GE(inner_iteration_tolerance, 0.0); | 
|  | } | 
|  |  | 
|  | if (options.use_nonmonotonic_steps) { | 
|  | OPTION_GT(max_consecutive_nonmonotonic_steps, 0); | 
|  | } | 
|  |  | 
|  | if (options.linear_solver_type == ITERATIVE_SCHUR && | 
|  | options.use_explicit_schur_complement && | 
|  | options.preconditioner_type != SCHUR_JACOBI) { | 
|  | *error =  "use_explicit_schur_complement only supports " | 
|  | "SCHUR_JACOBI as the preconditioner."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.preconditioner_type == CLUSTER_JACOBI && | 
|  | options.sparse_linear_algebra_library_type != SUITE_SPARSE) { | 
|  | *error =  "CLUSTER_JACOBI requires " | 
|  | "Solver::Options::sparse_linear_algebra_library_type to be " | 
|  | "SUITE_SPARSE"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.preconditioner_type == CLUSTER_TRIDIAGONAL && | 
|  | options.sparse_linear_algebra_library_type != SUITE_SPARSE) { | 
|  | *error =  "CLUSTER_TRIDIAGONAL requires " | 
|  | "Solver::Options::sparse_linear_algebra_library_type to be " | 
|  | "SUITE_SPARSE"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CERES_NO_LAPACK | 
|  | if (options.dense_linear_algebra_library_type == LAPACK) { | 
|  | if (options.linear_solver_type == DENSE_NORMAL_CHOLESKY) { | 
|  | *error = "Can't use DENSE_NORMAL_CHOLESKY with LAPACK because " | 
|  | "LAPACK was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } else if (options.linear_solver_type == DENSE_QR) { | 
|  | *error = "Can't use DENSE_QR with LAPACK because " | 
|  | "LAPACK was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } else if (options.linear_solver_type == DENSE_SCHUR) { | 
|  | *error = "Can't use DENSE_SCHUR with LAPACK because " | 
|  | "LAPACK was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CERES_NO_SUITESPARSE | 
|  | if (options.sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
|  | if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY) { | 
|  | *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITESPARSE because " | 
|  | "SuiteSparse was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } else if (options.linear_solver_type == SPARSE_SCHUR) { | 
|  | *error = "Can't use SPARSE_SCHUR with SUITESPARSE because " | 
|  | "SuiteSparse was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } else if (options.preconditioner_type == CLUSTER_JACOBI) { | 
|  | *error =  "CLUSTER_JACOBI preconditioner not supported. " | 
|  | "SuiteSparse was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } else if (options.preconditioner_type == CLUSTER_TRIDIAGONAL) { | 
|  | *error =  "CLUSTER_TRIDIAGONAL preconditioner not supported. " | 
|  | "SuiteSparse was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CERES_NO_CXSPARSE | 
|  | if (options.sparse_linear_algebra_library_type == CX_SPARSE) { | 
|  | if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY) { | 
|  | *error = "Can't use SPARSE_NORMAL_CHOLESKY with CX_SPARSE because " | 
|  | "CXSparse was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } else if (options.linear_solver_type == SPARSE_SCHUR) { | 
|  | *error = "Can't use SPARSE_SCHUR with CX_SPARSE because " | 
|  | "CXSparse was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_USE_EIGEN_SPARSE | 
|  | if (options.sparse_linear_algebra_library_type == EIGEN_SPARSE) { | 
|  | if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY) { | 
|  | *error = "Can't use SPARSE_NORMAL_CHOLESKY with EIGEN_SPARSE because " | 
|  | "Eigen's sparse linear algebra was not enabled when Ceres was " | 
|  | "built."; | 
|  | return false; | 
|  | } else if (options.linear_solver_type == SPARSE_SCHUR) { | 
|  | *error = "Can't use SPARSE_SCHUR with EIGEN_SPARSE because " | 
|  | "Eigen's sparse linear algebra was not enabled when Ceres was " | 
|  | "built."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (options.sparse_linear_algebra_library_type == NO_SPARSE) { | 
|  | if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY) { | 
|  | *error = "Can't use SPARSE_NORMAL_CHOLESKY as " | 
|  | "sparse_linear_algebra_library_type is NO_SPARSE."; | 
|  | return false; | 
|  | } else if (options.linear_solver_type == SPARSE_SCHUR) { | 
|  | *error = "Can't use SPARSE_SCHUR as " | 
|  | "sparse_linear_algebra_library_type is NO_SPARSE."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (options.trust_region_strategy_type == DOGLEG) { | 
|  | if (options.linear_solver_type == ITERATIVE_SCHUR || | 
|  | options.linear_solver_type == CGNR) { | 
|  | *error = "DOGLEG only supports exact factorization based linear " | 
|  | "solvers. If you want to use an iterative solver please " | 
|  | "use LEVENBERG_MARQUARDT as the trust_region_strategy_type"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (options.trust_region_minimizer_iterations_to_dump.size() > 0 && | 
|  | options.trust_region_problem_dump_format_type != CONSOLE && | 
|  | options.trust_region_problem_dump_directory.empty()) { | 
|  | *error = "Solver::Options::trust_region_problem_dump_directory is empty."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.dynamic_sparsity && | 
|  | options.linear_solver_type != SPARSE_NORMAL_CHOLESKY) { | 
|  | *error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LineSearchOptionsAreValid(const Solver::Options& options, string* error) { | 
|  | OPTION_GT(max_lbfgs_rank, 0); | 
|  | OPTION_GT(min_line_search_step_size, 0.0); | 
|  | OPTION_GT(max_line_search_step_contraction, 0.0); | 
|  | OPTION_LT(max_line_search_step_contraction, 1.0); | 
|  | OPTION_LT_OPTION(max_line_search_step_contraction, | 
|  | min_line_search_step_contraction); | 
|  | OPTION_LE(min_line_search_step_contraction, 1.0); | 
|  | OPTION_GT(max_num_line_search_step_size_iterations, 0); | 
|  | OPTION_GT(line_search_sufficient_function_decrease, 0.0); | 
|  | OPTION_LT_OPTION(line_search_sufficient_function_decrease, | 
|  | line_search_sufficient_curvature_decrease); | 
|  | OPTION_LT(line_search_sufficient_curvature_decrease, 1.0); | 
|  | OPTION_GT(max_line_search_step_expansion, 1.0); | 
|  |  | 
|  | if ((options.line_search_direction_type == ceres::BFGS || | 
|  | options.line_search_direction_type == ceres::LBFGS) && | 
|  | options.line_search_type != ceres::WOLFE) { | 
|  | *error = | 
|  | string("Invalid configuration: Solver::Options::line_search_type = ") | 
|  | + string(LineSearchTypeToString(options.line_search_type)) | 
|  | + string(". When using (L)BFGS, " | 
|  | "Solver::Options::line_search_type must be set to WOLFE."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Warn user if they have requested BISECTION interpolation, but constraints | 
|  | // on max/min step size change during line search prevent bisection scaling | 
|  | // from occurring. Warn only, as this is likely a user mistake, but one which | 
|  | // does not prevent us from continuing. | 
|  | LOG_IF(WARNING, | 
|  | (options.line_search_interpolation_type == ceres::BISECTION && | 
|  | (options.max_line_search_step_contraction > 0.5 || | 
|  | options.min_line_search_step_contraction < 0.5))) | 
|  | << "Line search interpolation type is BISECTION, but specified " | 
|  | << "max_line_search_step_contraction: " | 
|  | << options.max_line_search_step_contraction << ", and " | 
|  | << "min_line_search_step_contraction: " | 
|  | << options.min_line_search_step_contraction | 
|  | << ", prevent bisection (0.5) scaling, continuing with solve regardless."; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #undef OPTION_OP | 
|  | #undef OPTION_OP_OPTION | 
|  | #undef OPTION_GT | 
|  | #undef OPTION_GE | 
|  | #undef OPTION_LE | 
|  | #undef OPTION_LT | 
|  | #undef OPTION_LE_OPTION | 
|  | #undef OPTION_LT_OPTION | 
|  |  | 
|  | void StringifyOrdering(const vector<int>& ordering, string* report) { | 
|  | if (ordering.size() == 0) { | 
|  | internal::StringAppendF(report, "AUTOMATIC"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < ordering.size() - 1; ++i) { | 
|  | internal::StringAppendF(report, "%d,", ordering[i]); | 
|  | } | 
|  | internal::StringAppendF(report, "%d", ordering.back()); | 
|  | } | 
|  |  | 
|  | void SummarizeGivenProgram(const internal::Program& program, | 
|  | Solver::Summary* summary) { | 
|  | summary->num_parameter_blocks     = program.NumParameterBlocks(); | 
|  | summary->num_parameters           = program.NumParameters(); | 
|  | summary->num_effective_parameters = program.NumEffectiveParameters(); | 
|  | summary->num_residual_blocks      = program.NumResidualBlocks(); | 
|  | summary->num_residuals            = program.NumResiduals(); | 
|  | } | 
|  |  | 
|  | void SummarizeReducedProgram(const internal::Program& program, | 
|  | Solver::Summary* summary) { | 
|  | summary->num_parameter_blocks_reduced     = program.NumParameterBlocks(); | 
|  | summary->num_parameters_reduced           = program.NumParameters(); | 
|  | summary->num_effective_parameters_reduced = program.NumEffectiveParameters(); | 
|  | summary->num_residual_blocks_reduced      = program.NumResidualBlocks(); | 
|  | summary->num_residuals_reduced            = program.NumResiduals(); | 
|  | } | 
|  |  | 
|  | void PreSolveSummarize(const Solver::Options& options, | 
|  | const internal::ProblemImpl* problem, | 
|  | Solver::Summary* summary) { | 
|  | SummarizeGivenProgram(problem->program(), summary); | 
|  | internal::OrderingToGroupSizes(options.linear_solver_ordering.get(), | 
|  | &(summary->linear_solver_ordering_given)); | 
|  | internal::OrderingToGroupSizes(options.inner_iteration_ordering.get(), | 
|  | &(summary->inner_iteration_ordering_given)); | 
|  |  | 
|  | summary->dense_linear_algebra_library_type  = options.dense_linear_algebra_library_type;  //  NOLINT | 
|  | summary->dogleg_type                        = options.dogleg_type; | 
|  | summary->inner_iteration_time_in_seconds    = 0.0; | 
|  | summary->num_line_search_steps              = 0; | 
|  | summary->line_search_cost_evaluation_time_in_seconds = 0.0; | 
|  | summary->line_search_gradient_evaluation_time_in_seconds = 0.0; | 
|  | summary->line_search_polynomial_minimization_time_in_seconds = 0.0; | 
|  | summary->line_search_total_time_in_seconds  = 0.0; | 
|  | summary->inner_iterations_given             = options.use_inner_iterations; | 
|  | summary->line_search_direction_type         = options.line_search_direction_type;         //  NOLINT | 
|  | summary->line_search_interpolation_type     = options.line_search_interpolation_type;     //  NOLINT | 
|  | summary->line_search_type                   = options.line_search_type; | 
|  | summary->linear_solver_type_given           = options.linear_solver_type; | 
|  | summary->max_lbfgs_rank                     = options.max_lbfgs_rank; | 
|  | summary->minimizer_type                     = options.minimizer_type; | 
|  | summary->nonlinear_conjugate_gradient_type  = options.nonlinear_conjugate_gradient_type;  //  NOLINT | 
|  | summary->num_linear_solver_threads_given    = options.num_linear_solver_threads;          //  NOLINT | 
|  | summary->num_threads_given                  = options.num_threads; | 
|  | summary->preconditioner_type_given          = options.preconditioner_type; | 
|  | summary->sparse_linear_algebra_library_type = options.sparse_linear_algebra_library_type; //  NOLINT | 
|  | summary->trust_region_strategy_type         = options.trust_region_strategy_type;         //  NOLINT | 
|  | summary->visibility_clustering_type         = options.visibility_clustering_type;         //  NOLINT | 
|  | } | 
|  |  | 
|  | void PostSolveSummarize(const internal::PreprocessedProblem& pp, | 
|  | Solver::Summary* summary) { | 
|  | internal::OrderingToGroupSizes(pp.options.linear_solver_ordering.get(), | 
|  | &(summary->linear_solver_ordering_used)); | 
|  | internal::OrderingToGroupSizes(pp.options.inner_iteration_ordering.get(), | 
|  | &(summary->inner_iteration_ordering_used)); | 
|  |  | 
|  | summary->inner_iterations_used          = pp.inner_iteration_minimizer.get() != NULL;     // NOLINT | 
|  | summary->linear_solver_type_used        = pp.linear_solver_options.type; | 
|  | summary->num_linear_solver_threads_used = pp.options.num_linear_solver_threads;           // NOLINT | 
|  | summary->num_threads_used               = pp.options.num_threads; | 
|  | summary->preconditioner_type_used       = pp.options.preconditioner_type;                 // NOLINT | 
|  |  | 
|  | internal::SetSummaryFinalCost(summary); | 
|  |  | 
|  | if (pp.reduced_program.get() != NULL) { | 
|  | SummarizeReducedProgram(*pp.reduced_program, summary); | 
|  | } | 
|  |  | 
|  | using internal::CallStatistics; | 
|  |  | 
|  | // It is possible that no evaluator was created. This would be the | 
|  | // case if the preprocessor failed, or if the reduced problem did | 
|  | // not contain any parameter blocks. Thus, only extract the | 
|  | // evaluator statistics if one exists. | 
|  | if (pp.evaluator.get() != NULL) { | 
|  | const map<string, CallStatistics>& evaluator_statistics = | 
|  | pp.evaluator->Statistics(); | 
|  | { | 
|  | const CallStatistics& call_stats = FindWithDefault( | 
|  | evaluator_statistics, "Evaluator::Residual", CallStatistics()); | 
|  |  | 
|  | summary->residual_evaluation_time_in_seconds = call_stats.time; | 
|  | summary->num_residual_evaluations = call_stats.calls; | 
|  | } | 
|  | { | 
|  | const CallStatistics& call_stats = FindWithDefault( | 
|  | evaluator_statistics, "Evaluator::Jacobian", CallStatistics()); | 
|  |  | 
|  | summary->jacobian_evaluation_time_in_seconds = call_stats.time; | 
|  | summary->num_jacobian_evaluations = call_stats.calls; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Again, like the evaluator, there may or may not be a linear | 
|  | // solver from which we can extract run time statistics. In | 
|  | // particular the line search solver does not use a linear solver. | 
|  | if (pp.linear_solver.get() != NULL) { | 
|  | const map<string, CallStatistics>& linear_solver_statistics = | 
|  | pp.linear_solver->Statistics(); | 
|  | const CallStatistics& call_stats = FindWithDefault( | 
|  | linear_solver_statistics, "LinearSolver::Solve", CallStatistics()); | 
|  | summary->num_linear_solves = call_stats.calls; | 
|  | summary->linear_solver_time_in_seconds = call_stats.time; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Minimize(internal::PreprocessedProblem* pp, | 
|  | Solver::Summary* summary) { | 
|  | using internal::Program; | 
|  | using internal::scoped_ptr; | 
|  | using internal::Minimizer; | 
|  |  | 
|  | Program* program = pp->reduced_program.get(); | 
|  | if (pp->reduced_program->NumParameterBlocks() == 0) { | 
|  | summary->message = "Function tolerance reached. " | 
|  | "No non-constant parameter blocks found."; | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, pp->options.logging_type != SILENT) << summary->message; | 
|  | summary->initial_cost = summary->fixed_cost; | 
|  | summary->final_cost = summary->fixed_cost; | 
|  | return; | 
|  | } | 
|  |  | 
|  | scoped_ptr<Minimizer> minimizer( | 
|  | Minimizer::Create(pp->options.minimizer_type)); | 
|  | minimizer->Minimize(pp->minimizer_options, | 
|  | pp->reduced_parameters.data(), | 
|  | summary); | 
|  |  | 
|  | if (summary->IsSolutionUsable()) { | 
|  | program->StateVectorToParameterBlocks(pp->reduced_parameters.data()); | 
|  | program->CopyParameterBlockStateToUserState(); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string SchurStructureToString(const int row_block_size, | 
|  | const int e_block_size, | 
|  | const int f_block_size) { | 
|  | const std::string row = | 
|  | (row_block_size == Eigen::Dynamic) | 
|  | ? "d" : internal::StringPrintf("%d", row_block_size); | 
|  |  | 
|  | const std::string e = | 
|  | (e_block_size == Eigen::Dynamic) | 
|  | ? "d" : internal::StringPrintf("%d", e_block_size); | 
|  |  | 
|  | const std::string f = | 
|  | (f_block_size == Eigen::Dynamic) | 
|  | ? "d" : internal::StringPrintf("%d", f_block_size); | 
|  |  | 
|  | return internal::StringPrintf("%s,%s,%s", row.c_str(), e.c_str(), f.c_str()); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | bool Solver::Options::IsValid(string* error) const { | 
|  | if (!CommonOptionsAreValid(*this, error)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (minimizer_type == TRUST_REGION && | 
|  | !TrustRegionOptionsAreValid(*this, error)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We do not know if the problem is bounds constrained or not, if it | 
|  | // is then the trust region solver will also use the line search | 
|  | // solver to do a projection onto the box constraints, so make sure | 
|  | // that the line search options are checked independent of what | 
|  | // minimizer algorithm is being used. | 
|  | return LineSearchOptionsAreValid(*this, error); | 
|  | } | 
|  |  | 
|  | Solver::~Solver() {} | 
|  |  | 
|  | void Solver::Solve(const Solver::Options& options, | 
|  | Problem* problem, | 
|  | Solver::Summary* summary) { | 
|  | using internal::PreprocessedProblem; | 
|  | using internal::Preprocessor; | 
|  | using internal::ProblemImpl; | 
|  | using internal::Program; | 
|  | using internal::scoped_ptr; | 
|  | using internal::WallTimeInSeconds; | 
|  |  | 
|  | CHECK_NOTNULL(problem); | 
|  | CHECK_NOTNULL(summary); | 
|  |  | 
|  | double start_time = WallTimeInSeconds(); | 
|  | *summary = Summary(); | 
|  | if (!options.IsValid(&summary->message)) { | 
|  | LOG(ERROR) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ProblemImpl* problem_impl = problem->problem_impl_.get(); | 
|  | Program* program = problem_impl->mutable_program(); | 
|  | PreSolveSummarize(options, problem_impl, summary); | 
|  |  | 
|  | // Make sure that all the parameter blocks states are set to the | 
|  | // values provided by the user. | 
|  | program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
|  |  | 
|  | // If gradient_checking is enabled, wrap all cost functions in a | 
|  | // gradient checker and install a callback that terminates if any gradient | 
|  | // error is detected. | 
|  | scoped_ptr<internal::ProblemImpl> gradient_checking_problem; | 
|  | internal::GradientCheckingIterationCallback gradient_checking_callback; | 
|  | Solver::Options modified_options = options; | 
|  | if (options.check_gradients) { | 
|  | modified_options.callbacks.push_back(&gradient_checking_callback); | 
|  | gradient_checking_problem.reset( | 
|  | CreateGradientCheckingProblemImpl( | 
|  | problem_impl, | 
|  | options.gradient_check_numeric_derivative_relative_step_size, | 
|  | options.gradient_check_relative_precision, | 
|  | &gradient_checking_callback)); | 
|  | problem_impl = gradient_checking_problem.get(); | 
|  | program = problem_impl->mutable_program(); | 
|  | } | 
|  |  | 
|  | scoped_ptr<Preprocessor> preprocessor( | 
|  | Preprocessor::Create(modified_options.minimizer_type)); | 
|  | PreprocessedProblem pp; | 
|  |  | 
|  | const bool status = preprocessor->Preprocess(modified_options, problem_impl, &pp); | 
|  |  | 
|  | // We check the linear_solver_options.type rather than | 
|  | // modified_options.linear_solver_type because, depending on the | 
|  | // lack of a Schur structure, the preprocessor may change the linear | 
|  | // solver type. | 
|  | if (IsSchurType(pp.linear_solver_options.type)) { | 
|  | // TODO(sameeragarwal): We can likely eliminate the duplicate call | 
|  | // to DetectStructure here and inside the linear solver, by | 
|  | // calling this in the preprocessor. | 
|  | int row_block_size; | 
|  | int e_block_size; | 
|  | int f_block_size; | 
|  | DetectStructure(*static_cast<internal::BlockSparseMatrix*>( | 
|  | pp.minimizer_options.jacobian.get()) | 
|  | ->block_structure(), | 
|  | pp.linear_solver_options.elimination_groups[0], | 
|  | &row_block_size, | 
|  | &e_block_size, | 
|  | &f_block_size); | 
|  | summary->schur_structure_given = | 
|  | SchurStructureToString(row_block_size, e_block_size, f_block_size); | 
|  | internal::GetBestSchurTemplateSpecialization(&row_block_size, | 
|  | &e_block_size, | 
|  | &f_block_size); | 
|  | summary->schur_structure_used = | 
|  | SchurStructureToString(row_block_size, e_block_size, f_block_size); | 
|  | } | 
|  |  | 
|  | summary->fixed_cost = pp.fixed_cost; | 
|  | summary->preprocessor_time_in_seconds = WallTimeInSeconds() - start_time; | 
|  |  | 
|  | if (status) { | 
|  | const double minimizer_start_time = WallTimeInSeconds(); | 
|  | Minimize(&pp, summary); | 
|  | summary->minimizer_time_in_seconds = | 
|  | WallTimeInSeconds() - minimizer_start_time; | 
|  | } else { | 
|  | summary->message = pp.error; | 
|  | } | 
|  |  | 
|  | const double postprocessor_start_time = WallTimeInSeconds(); | 
|  | problem_impl = problem->problem_impl_.get(); | 
|  | program = problem_impl->mutable_program(); | 
|  | // On exit, ensure that the parameter blocks again point at the user | 
|  | // provided values and the parameter blocks are numbered according | 
|  | // to their position in the original user provided program. | 
|  | program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  | PostSolveSummarize(pp, summary); | 
|  | summary->postprocessor_time_in_seconds = | 
|  | WallTimeInSeconds() - postprocessor_start_time; | 
|  |  | 
|  | // If the gradient checker reported an error, we want to report FAILURE | 
|  | // instead of USER_FAILURE and provide the error log. | 
|  | if (gradient_checking_callback.gradient_error_detected()) { | 
|  | summary->termination_type = FAILURE; | 
|  | summary->message = gradient_checking_callback.error_log(); | 
|  | } | 
|  |  | 
|  | summary->total_time_in_seconds = WallTimeInSeconds() - start_time; | 
|  | } | 
|  |  | 
|  | void Solve(const Solver::Options& options, | 
|  | Problem* problem, | 
|  | Solver::Summary* summary) { | 
|  | Solver solver; | 
|  | solver.Solve(options, problem, summary); | 
|  | } | 
|  |  | 
|  | Solver::Summary::Summary() | 
|  | // Invalid values for most fields, to ensure that we are not | 
|  | // accidentally reporting default values. | 
|  | : minimizer_type(TRUST_REGION), | 
|  | termination_type(FAILURE), | 
|  | message("ceres::Solve was not called."), | 
|  | initial_cost(-1.0), | 
|  | final_cost(-1.0), | 
|  | fixed_cost(-1.0), | 
|  | num_successful_steps(-1), | 
|  | num_unsuccessful_steps(-1), | 
|  | num_inner_iteration_steps(-1), | 
|  | num_line_search_steps(-1), | 
|  | preprocessor_time_in_seconds(-1.0), | 
|  | minimizer_time_in_seconds(-1.0), | 
|  | postprocessor_time_in_seconds(-1.0), | 
|  | total_time_in_seconds(-1.0), | 
|  | linear_solver_time_in_seconds(-1.0), | 
|  | num_linear_solves(-1), | 
|  | residual_evaluation_time_in_seconds(-1.0), | 
|  | num_residual_evaluations(-1), | 
|  | jacobian_evaluation_time_in_seconds(-1.0), | 
|  | num_jacobian_evaluations(-1), | 
|  | inner_iteration_time_in_seconds(-1.0), | 
|  | line_search_cost_evaluation_time_in_seconds(-1.0), | 
|  | line_search_gradient_evaluation_time_in_seconds(-1.0), | 
|  | line_search_polynomial_minimization_time_in_seconds(-1.0), | 
|  | line_search_total_time_in_seconds(-1.0), | 
|  | num_parameter_blocks(-1), | 
|  | num_parameters(-1), | 
|  | num_effective_parameters(-1), | 
|  | num_residual_blocks(-1), | 
|  | num_residuals(-1), | 
|  | num_parameter_blocks_reduced(-1), | 
|  | num_parameters_reduced(-1), | 
|  | num_effective_parameters_reduced(-1), | 
|  | num_residual_blocks_reduced(-1), | 
|  | num_residuals_reduced(-1), | 
|  | is_constrained(false), | 
|  | num_threads_given(-1), | 
|  | num_threads_used(-1), | 
|  | num_linear_solver_threads_given(-1), | 
|  | num_linear_solver_threads_used(-1), | 
|  | linear_solver_type_given(SPARSE_NORMAL_CHOLESKY), | 
|  | linear_solver_type_used(SPARSE_NORMAL_CHOLESKY), | 
|  | inner_iterations_given(false), | 
|  | inner_iterations_used(false), | 
|  | preconditioner_type_given(IDENTITY), | 
|  | preconditioner_type_used(IDENTITY), | 
|  | visibility_clustering_type(CANONICAL_VIEWS), | 
|  | trust_region_strategy_type(LEVENBERG_MARQUARDT), | 
|  | dense_linear_algebra_library_type(EIGEN), | 
|  | sparse_linear_algebra_library_type(SUITE_SPARSE), | 
|  | line_search_direction_type(LBFGS), | 
|  | line_search_type(ARMIJO), | 
|  | line_search_interpolation_type(BISECTION), | 
|  | nonlinear_conjugate_gradient_type(FLETCHER_REEVES), | 
|  | max_lbfgs_rank(-1) { | 
|  | } | 
|  |  | 
|  | using internal::StringAppendF; | 
|  | using internal::StringPrintf; | 
|  |  | 
|  | string Solver::Summary::BriefReport() const { | 
|  | return StringPrintf("Ceres Solver Report: " | 
|  | "Iterations: %d, " | 
|  | "Initial cost: %e, " | 
|  | "Final cost: %e, " | 
|  | "Termination: %s", | 
|  | num_successful_steps + num_unsuccessful_steps, | 
|  | initial_cost, | 
|  | final_cost, | 
|  | TerminationTypeToString(termination_type)); | 
|  | } | 
|  |  | 
|  | string Solver::Summary::FullReport() const { | 
|  | using internal::VersionString; | 
|  |  | 
|  | string report = string("\nSolver Summary (v " + VersionString() + ")\n\n"); | 
|  |  | 
|  | StringAppendF(&report, "%45s    %21s\n", "Original", "Reduced"); | 
|  | StringAppendF(&report, "Parameter blocks    % 25d% 25d\n", | 
|  | num_parameter_blocks, num_parameter_blocks_reduced); | 
|  | StringAppendF(&report, "Parameters          % 25d% 25d\n", | 
|  | num_parameters, num_parameters_reduced); | 
|  | if (num_effective_parameters_reduced != num_parameters_reduced) { | 
|  | StringAppendF(&report, "Effective parameters% 25d% 25d\n", | 
|  | num_effective_parameters, num_effective_parameters_reduced); | 
|  | } | 
|  | StringAppendF(&report, "Residual blocks     % 25d% 25d\n", | 
|  | num_residual_blocks, num_residual_blocks_reduced); | 
|  | StringAppendF(&report, "Residuals           % 25d% 25d\n", | 
|  | num_residuals, num_residuals_reduced); | 
|  |  | 
|  | if (minimizer_type == TRUST_REGION) { | 
|  | // TRUST_SEARCH HEADER | 
|  | StringAppendF(&report, "\nMinimizer                 %19s\n", | 
|  | "TRUST_REGION"); | 
|  |  | 
|  | if (linear_solver_type_used == DENSE_NORMAL_CHOLESKY || | 
|  | linear_solver_type_used == DENSE_SCHUR || | 
|  | linear_solver_type_used == DENSE_QR) { | 
|  | StringAppendF(&report, "\nDense linear algebra library  %15s\n", | 
|  | DenseLinearAlgebraLibraryTypeToString( | 
|  | dense_linear_algebra_library_type)); | 
|  | } | 
|  |  | 
|  | if (linear_solver_type_used == SPARSE_NORMAL_CHOLESKY || | 
|  | linear_solver_type_used == SPARSE_SCHUR || | 
|  | (linear_solver_type_used == ITERATIVE_SCHUR && | 
|  | (preconditioner_type_used == CLUSTER_JACOBI || | 
|  | preconditioner_type_used == CLUSTER_TRIDIAGONAL))) { | 
|  | StringAppendF(&report, "\nSparse linear algebra library %15s\n", | 
|  | SparseLinearAlgebraLibraryTypeToString( | 
|  | sparse_linear_algebra_library_type)); | 
|  | } | 
|  |  | 
|  | StringAppendF(&report, "Trust region strategy     %19s", | 
|  | TrustRegionStrategyTypeToString( | 
|  | trust_region_strategy_type)); | 
|  | if (trust_region_strategy_type == DOGLEG) { | 
|  | if (dogleg_type == TRADITIONAL_DOGLEG) { | 
|  | StringAppendF(&report, " (TRADITIONAL)"); | 
|  | } else { | 
|  | StringAppendF(&report, " (SUBSPACE)"); | 
|  | } | 
|  | } | 
|  | StringAppendF(&report, "\n"); | 
|  | StringAppendF(&report, "\n"); | 
|  |  | 
|  | StringAppendF(&report, "%45s    %21s\n", "Given",  "Used"); | 
|  | StringAppendF(&report, "Linear solver       %25s%25s\n", | 
|  | LinearSolverTypeToString(linear_solver_type_given), | 
|  | LinearSolverTypeToString(linear_solver_type_used)); | 
|  |  | 
|  | if (linear_solver_type_given == CGNR || | 
|  | linear_solver_type_given == ITERATIVE_SCHUR) { | 
|  | StringAppendF(&report, "Preconditioner      %25s%25s\n", | 
|  | PreconditionerTypeToString(preconditioner_type_given), | 
|  | PreconditionerTypeToString(preconditioner_type_used)); | 
|  | } | 
|  |  | 
|  | if (preconditioner_type_used == CLUSTER_JACOBI || | 
|  | preconditioner_type_used == CLUSTER_TRIDIAGONAL) { | 
|  | StringAppendF(&report, "Visibility clustering%24s%25s\n", | 
|  | VisibilityClusteringTypeToString( | 
|  | visibility_clustering_type), | 
|  | VisibilityClusteringTypeToString( | 
|  | visibility_clustering_type)); | 
|  | } | 
|  | StringAppendF(&report, "Threads             % 25d% 25d\n", | 
|  | num_threads_given, num_threads_used); | 
|  | StringAppendF(&report, "Linear solver threads % 23d% 25d\n", | 
|  | num_linear_solver_threads_given, | 
|  | num_linear_solver_threads_used); | 
|  |  | 
|  | string given; | 
|  | StringifyOrdering(linear_solver_ordering_given, &given); | 
|  | string used; | 
|  | StringifyOrdering(linear_solver_ordering_used, &used); | 
|  | StringAppendF(&report, | 
|  | "Linear solver ordering %22s %24s\n", | 
|  | given.c_str(), | 
|  | used.c_str()); | 
|  | if (IsSchurType(linear_solver_type_used)) { | 
|  | StringAppendF(&report, | 
|  | "Schur structure        %22s %24s\n", | 
|  | schur_structure_given.c_str(), | 
|  | schur_structure_used.c_str()); | 
|  | } | 
|  |  | 
|  | if (inner_iterations_given) { | 
|  | StringAppendF(&report, | 
|  | "Use inner iterations     %20s     %20s\n", | 
|  | inner_iterations_given ? "True" : "False", | 
|  | inner_iterations_used ? "True" : "False"); | 
|  | } | 
|  |  | 
|  | if (inner_iterations_used) { | 
|  | string given; | 
|  | StringifyOrdering(inner_iteration_ordering_given, &given); | 
|  | string used; | 
|  | StringifyOrdering(inner_iteration_ordering_used, &used); | 
|  | StringAppendF(&report, | 
|  | "Inner iteration ordering %20s %24s\n", | 
|  | given.c_str(), | 
|  | used.c_str()); | 
|  | } | 
|  | } else { | 
|  | // LINE_SEARCH HEADER | 
|  | StringAppendF(&report, "\nMinimizer                 %19s\n", "LINE_SEARCH"); | 
|  |  | 
|  |  | 
|  | string line_search_direction_string; | 
|  | if (line_search_direction_type == LBFGS) { | 
|  | line_search_direction_string = StringPrintf("LBFGS (%d)", max_lbfgs_rank); | 
|  | } else if (line_search_direction_type == NONLINEAR_CONJUGATE_GRADIENT) { | 
|  | line_search_direction_string = | 
|  | NonlinearConjugateGradientTypeToString( | 
|  | nonlinear_conjugate_gradient_type); | 
|  | } else { | 
|  | line_search_direction_string = | 
|  | LineSearchDirectionTypeToString(line_search_direction_type); | 
|  | } | 
|  |  | 
|  | StringAppendF(&report, "Line search direction     %19s\n", | 
|  | line_search_direction_string.c_str()); | 
|  |  | 
|  | const string line_search_type_string = | 
|  | StringPrintf("%s %s", | 
|  | LineSearchInterpolationTypeToString( | 
|  | line_search_interpolation_type), | 
|  | LineSearchTypeToString(line_search_type)); | 
|  | StringAppendF(&report, "Line search type          %19s\n", | 
|  | line_search_type_string.c_str()); | 
|  | StringAppendF(&report, "\n"); | 
|  |  | 
|  | StringAppendF(&report, "%45s    %21s\n", "Given",  "Used"); | 
|  | StringAppendF(&report, "Threads             % 25d% 25d\n", | 
|  | num_threads_given, num_threads_used); | 
|  | } | 
|  |  | 
|  | StringAppendF(&report, "\nCost:\n"); | 
|  | StringAppendF(&report, "Initial        % 30e\n", initial_cost); | 
|  | if (termination_type != FAILURE && | 
|  | termination_type != USER_FAILURE) { | 
|  | StringAppendF(&report, "Final          % 30e\n", final_cost); | 
|  | StringAppendF(&report, "Change         % 30e\n", | 
|  | initial_cost - final_cost); | 
|  | } | 
|  |  | 
|  | StringAppendF(&report, "\nMinimizer iterations         % 16d\n", | 
|  | num_successful_steps + num_unsuccessful_steps); | 
|  |  | 
|  | // Successful/Unsuccessful steps only matter in the case of the | 
|  | // trust region solver. Line search terminates when it encounters | 
|  | // the first unsuccessful step. | 
|  | if (minimizer_type == TRUST_REGION) { | 
|  | StringAppendF(&report, "Successful steps               % 14d\n", | 
|  | num_successful_steps); | 
|  | StringAppendF(&report, "Unsuccessful steps             % 14d\n", | 
|  | num_unsuccessful_steps); | 
|  | } | 
|  | if (inner_iterations_used) { | 
|  | StringAppendF(&report, "Steps with inner iterations    % 14d\n", | 
|  | num_inner_iteration_steps); | 
|  | } | 
|  |  | 
|  | const bool line_search_used = | 
|  | (minimizer_type == LINE_SEARCH || | 
|  | (minimizer_type == TRUST_REGION && is_constrained)); | 
|  |  | 
|  | if (line_search_used) { | 
|  | StringAppendF(&report, "Line search steps              % 14d\n", | 
|  | num_line_search_steps); | 
|  | } | 
|  |  | 
|  | StringAppendF(&report, "\nTime (in seconds):\n"); | 
|  | StringAppendF(&report, "Preprocessor        %25.6f\n", | 
|  | preprocessor_time_in_seconds); | 
|  |  | 
|  | StringAppendF(&report, "\n  Residual only evaluation %18.6f (%d)\n", | 
|  | residual_evaluation_time_in_seconds, num_residual_evaluations); | 
|  | if (line_search_used) { | 
|  | StringAppendF(&report, "    Line search cost evaluation    %10.6f\n", | 
|  | line_search_cost_evaluation_time_in_seconds); | 
|  | } | 
|  | StringAppendF(&report, "  Jacobian & residual evaluation %12.6f (%d)\n", | 
|  | jacobian_evaluation_time_in_seconds, num_jacobian_evaluations); | 
|  | if (line_search_used) { | 
|  | StringAppendF(&report, "    Line search gradient evaluation   %6.6f\n", | 
|  | line_search_gradient_evaluation_time_in_seconds); | 
|  | } | 
|  |  | 
|  | if (minimizer_type == TRUST_REGION) { | 
|  | StringAppendF(&report, "  Linear solver       %23.6f (%d)\n", | 
|  | linear_solver_time_in_seconds, num_linear_solves); | 
|  | } | 
|  |  | 
|  | if (inner_iterations_used) { | 
|  | StringAppendF(&report, "  Inner iterations    %23.6f\n", | 
|  | inner_iteration_time_in_seconds); | 
|  | } | 
|  |  | 
|  | if (line_search_used) { | 
|  | StringAppendF(&report, "  Line search polynomial minimization  %.6f\n", | 
|  | line_search_polynomial_minimization_time_in_seconds); | 
|  | } | 
|  |  | 
|  | StringAppendF(&report, "Minimizer           %25.6f\n\n", | 
|  | minimizer_time_in_seconds); | 
|  |  | 
|  | StringAppendF(&report, "Postprocessor        %24.6f\n", | 
|  | postprocessor_time_in_seconds); | 
|  |  | 
|  | StringAppendF(&report, "Total               %25.6f\n\n", | 
|  | total_time_in_seconds); | 
|  |  | 
|  | StringAppendF(&report, "Termination:        %25s (%s)\n", | 
|  | TerminationTypeToString(termination_type), message.c_str()); | 
|  | return report; | 
|  | } | 
|  |  | 
|  | bool Solver::Summary::IsSolutionUsable() const { | 
|  | return internal::IsSolutionUsable(*this); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres |