|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/solver.h" | 
|  |  | 
|  | #include <limits> | 
|  | #include <cmath> | 
|  | #include <vector> | 
|  | #include "gtest/gtest.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/autodiff_cost_function.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  | #include "ceres/problem.h" | 
|  | #include "ceres/problem_impl.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using std::string; | 
|  |  | 
|  | TEST(SolverOptions, DefaultTrustRegionOptionsAreValid) { | 
|  | Solver::Options options; | 
|  | options.minimizer_type = TRUST_REGION; | 
|  | string error; | 
|  | EXPECT_TRUE(options.IsValid(&error)) << error; | 
|  | } | 
|  |  | 
|  | TEST(SolverOptions, DefaultLineSearchOptionsAreValid) { | 
|  | Solver::Options options; | 
|  | options.minimizer_type = LINE_SEARCH; | 
|  | string error; | 
|  | EXPECT_TRUE(options.IsValid(&error)) << error; | 
|  | } | 
|  |  | 
|  | struct QuadraticCostFunctor { | 
|  | template <typename T> bool operator()(const T* const x, | 
|  | T* residual) const { | 
|  | residual[0] = T(5.0) - *x; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static CostFunction* Create() { | 
|  | return new AutoDiffCostFunction<QuadraticCostFunctor, 1, 1>( | 
|  | new QuadraticCostFunctor); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct RememberingCallback : public IterationCallback { | 
|  | explicit RememberingCallback(double *x) : calls(0), x(x) {} | 
|  | virtual ~RememberingCallback() {} | 
|  | virtual CallbackReturnType operator()(const IterationSummary& summary) { | 
|  | x_values.push_back(*x); | 
|  | return SOLVER_CONTINUE; | 
|  | } | 
|  | int calls; | 
|  | double *x; | 
|  | std::vector<double> x_values; | 
|  | }; | 
|  |  | 
|  | TEST(Solver, UpdateStateEveryIterationOption) { | 
|  | double x = 50.0; | 
|  | const double original_x = x; | 
|  |  | 
|  | scoped_ptr<CostFunction> cost_function(QuadraticCostFunctor::Create()); | 
|  | Problem::Options problem_options; | 
|  | problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; | 
|  | Problem problem(problem_options); | 
|  | problem.AddResidualBlock(cost_function.get(), NULL, &x); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  |  | 
|  | RememberingCallback callback(&x); | 
|  | options.callbacks.push_back(&callback); | 
|  |  | 
|  | Solver::Summary summary; | 
|  |  | 
|  | int num_iterations; | 
|  |  | 
|  | // First try: no updating. | 
|  | Solve(options, &problem, &summary); | 
|  | num_iterations = summary.num_successful_steps + | 
|  | summary.num_unsuccessful_steps; | 
|  | EXPECT_GT(num_iterations, 1); | 
|  | for (int i = 0; i < callback.x_values.size(); ++i) { | 
|  | EXPECT_EQ(50.0, callback.x_values[i]); | 
|  | } | 
|  |  | 
|  | // Second try: with updating | 
|  | x = 50.0; | 
|  | options.update_state_every_iteration = true; | 
|  | callback.x_values.clear(); | 
|  | Solve(options, &problem, &summary); | 
|  | num_iterations = summary.num_successful_steps + | 
|  | summary.num_unsuccessful_steps; | 
|  | EXPECT_GT(num_iterations, 1); | 
|  | EXPECT_EQ(original_x, callback.x_values[0]); | 
|  | EXPECT_NE(original_x, callback.x_values[1]); | 
|  | } | 
|  |  | 
|  | // The parameters must be in separate blocks so that they can be individually | 
|  | // set constant or not. | 
|  | struct Quadratic4DCostFunction { | 
|  | template <typename T> bool operator()(const T* const x, | 
|  | const T* const y, | 
|  | const T* const z, | 
|  | const T* const w, | 
|  | T* residual) const { | 
|  | // A 4-dimension axis-aligned quadratic. | 
|  | residual[0] = T(10.0) - *x + | 
|  | T(20.0) - *y + | 
|  | T(30.0) - *z + | 
|  | T(40.0) - *w; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static CostFunction* Create() { | 
|  | return new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>( | 
|  | new Quadratic4DCostFunction); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // A cost function that simply returns its argument. | 
|  | class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> { | 
|  | public: | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | residuals[0] = parameters[0][0]; | 
|  | if (jacobians != NULL && jacobians[0] != NULL) { | 
|  | jacobians[0][0] = 1.0; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(Solver, TrustRegionProblemHasNoParameterBlocks) { | 
|  | Problem problem; | 
|  | Solver::Options options; | 
|  | options.minimizer_type = TRUST_REGION; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, CONVERGENCE); | 
|  | EXPECT_EQ(summary.message, | 
|  | "Function tolerance reached. " | 
|  | "No non-constant parameter blocks found."); | 
|  | } | 
|  |  | 
|  | TEST(Solver, LineSearchProblemHasNoParameterBlocks) { | 
|  | Problem problem; | 
|  | Solver::Options options; | 
|  | options.minimizer_type = LINE_SEARCH; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, CONVERGENCE); | 
|  | EXPECT_EQ(summary.message, | 
|  | "Function tolerance reached. " | 
|  | "No non-constant parameter blocks found."); | 
|  | } | 
|  |  | 
|  | TEST(Solver, TrustRegionProblemHasZeroResiduals) { | 
|  | Problem problem; | 
|  | double x = 1; | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | Solver::Options options; | 
|  | options.minimizer_type = TRUST_REGION; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, CONVERGENCE); | 
|  | EXPECT_EQ(summary.message, | 
|  | "Function tolerance reached. " | 
|  | "No non-constant parameter blocks found."); | 
|  | } | 
|  |  | 
|  | TEST(Solver, LineSearchProblemHasZeroResiduals) { | 
|  | Problem problem; | 
|  | double x = 1; | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | Solver::Options options; | 
|  | options.minimizer_type = LINE_SEARCH; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, CONVERGENCE); | 
|  | EXPECT_EQ(summary.message, | 
|  | "Function tolerance reached. " | 
|  | "No non-constant parameter blocks found."); | 
|  | } | 
|  |  | 
|  | TEST(Solver, TrustRegionProblemIsConstant) { | 
|  | Problem problem; | 
|  | double x = 1; | 
|  | problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  | Solver::Options options; | 
|  | options.minimizer_type = TRUST_REGION; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, CONVERGENCE); | 
|  | EXPECT_EQ(summary.initial_cost, 1.0 / 2.0); | 
|  | EXPECT_EQ(summary.final_cost, 1.0 / 2.0); | 
|  | } | 
|  |  | 
|  | TEST(Solver, LineSearchProblemIsConstant) { | 
|  | Problem problem; | 
|  | double x = 1; | 
|  | problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  | Solver::Options options; | 
|  | options.minimizer_type = LINE_SEARCH; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, CONVERGENCE); | 
|  | EXPECT_EQ(summary.initial_cost, 1.0 / 2.0); | 
|  | EXPECT_EQ(summary.final_cost, 1.0 / 2.0); | 
|  | } | 
|  |  | 
|  | #if defined(CERES_NO_SUITESPARSE) | 
|  | TEST(Solver, SparseNormalCholeskyNoSuiteSparse) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  |  | 
|  | TEST(Solver, SparseSchurNoSuiteSparse) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
|  | options.linear_solver_type = SPARSE_SCHUR; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CERES_NO_CXSPARSE) | 
|  | TEST(Solver, SparseNormalCholeskyNoCXSparse) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = CX_SPARSE; | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  |  | 
|  | TEST(Solver, SparseSchurNoCXSparse) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = CX_SPARSE; | 
|  | options.linear_solver_type = SPARSE_SCHUR; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !defined(CERES_USE_EIGEN_SPARSE) | 
|  | TEST(Solver, SparseNormalCholeskyNoEigenSparse) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  |  | 
|  | TEST(Solver, SparseSchurNoEigenSparse) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; | 
|  | options.linear_solver_type = SPARSE_SCHUR; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | TEST(Solver, SparseNormalCholeskyNoSparseLibrary) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = NO_SPARSE; | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  |  | 
|  | TEST(Solver, SparseSchurNoSparseLibrary) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = NO_SPARSE; | 
|  | options.linear_solver_type = SPARSE_SCHUR; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  |  | 
|  | TEST(Solver, IterativeSchurWithClusterJacobiPerconditionerNoSparseLibrary) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = NO_SPARSE; | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | // Requires SuiteSparse. | 
|  | options.preconditioner_type = CLUSTER_JACOBI; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  |  | 
|  | TEST(Solver, IterativeSchurWithClusterTridiagonalPerconditionerNoSparseLibrary) { | 
|  | Solver::Options options; | 
|  | options.sparse_linear_algebra_library_type = NO_SPARSE; | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | // Requires SuiteSparse. | 
|  | options.preconditioner_type = CLUSTER_TRIDIAGONAL; | 
|  | string message; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  |  | 
|  | TEST(Solver, IterativeLinearSolverForDogleg) { | 
|  | Solver::Options options; | 
|  | options.trust_region_strategy_type = DOGLEG; | 
|  | string message; | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  |  | 
|  | options.linear_solver_type = CGNR; | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | } | 
|  |  | 
|  | TEST(Solver, LinearSolverTypeNormalOperation) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  |  | 
|  | string message; | 
|  | EXPECT_TRUE(options.IsValid(&message)); | 
|  |  | 
|  | options.linear_solver_type = DENSE_NORMAL_CHOLESKY; | 
|  | EXPECT_TRUE(options.IsValid(&message)); | 
|  |  | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | EXPECT_TRUE(options.IsValid(&message)); | 
|  |  | 
|  | options.linear_solver_type = SPARSE_SCHUR; | 
|  | #if defined(CERES_NO_SUITESPARSE) &&            \ | 
|  | defined(CERES_NO_CXSPARSE) &&               \ | 
|  | !defined(CERES_USE_EIGEN_SPARSE) | 
|  | EXPECT_FALSE(options.IsValid(&message)); | 
|  | #else | 
|  | EXPECT_TRUE(options.IsValid(&message)); | 
|  | #endif | 
|  |  | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | EXPECT_TRUE(options.IsValid(&message)); | 
|  | } | 
|  |  | 
|  | template<int kNumResiduals, int N1 = 0, int N2 = 0, int N3 = 0> | 
|  | class DummyCostFunction : public SizedCostFunction<kNumResiduals, N1, N2, N3> { | 
|  | public: | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | for (int i = 0; i < kNumResiduals; ++i) { | 
|  | residuals[i] = kNumResiduals * kNumResiduals + i; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(Solver, FixedCostForConstantProblem) { | 
|  | double x = 1.0; | 
|  | Problem problem; | 
|  | problem.AddResidualBlock(new DummyCostFunction<2, 1>(), NULL, &x); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  | const double expected_cost = 41.0 / 2.0;  // 1/2 * ((4 + 0)^2 + (4 + 1)^2) | 
|  | Solver::Options options; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_TRUE(summary.IsSolutionUsable()); | 
|  | EXPECT_EQ(summary.fixed_cost, expected_cost); | 
|  | EXPECT_EQ(summary.initial_cost, expected_cost); | 
|  | EXPECT_EQ(summary.final_cost, expected_cost); | 
|  | EXPECT_EQ(summary.iterations.size(), 0); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |