| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2018 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: alexs.mac@gmail.com (Alex Stewart) | 
 |  | 
 | #ifndef CERES_INTERNAL_ACCELERATE_SPARSE_H_ | 
 | #define CERES_INTERNAL_ACCELERATE_SPARSE_H_ | 
 |  | 
 | // This include must come before any #ifndef check on Ceres compile options. | 
 | #include "ceres/internal/config.h" | 
 |  | 
 | #ifndef CERES_NO_ACCELERATE_SPARSE | 
 |  | 
 | #include <memory> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "Accelerate.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/sparse_cholesky.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class CompressedRowSparseMatrix; | 
 | class TripletSparseMatrix; | 
 |  | 
 | template <typename Scalar> | 
 | struct SparseTypesTrait {}; | 
 |  | 
 | template <> | 
 | struct SparseTypesTrait<double> { | 
 |   using DenseVector = DenseVector_Double; | 
 |   using SparseMatrix = SparseMatrix_Double; | 
 |   using SymbolicFactorization = SparseOpaqueSymbolicFactorization; | 
 |   using NumericFactorization = SparseOpaqueFactorization_Double; | 
 | }; | 
 |  | 
 | template <> | 
 | struct SparseTypesTrait<float> { | 
 |   using DenseVector = DenseVector_Float; | 
 |   using SparseMatrix = SparseMatrix_Float; | 
 |   using SymbolicFactorization = SparseOpaqueSymbolicFactorization; | 
 |   using NumericFactorization = SparseOpaqueFactorization_Float; | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | class AccelerateSparse { | 
 |  public: | 
 |   using DenseVector = typename SparseTypesTrait<Scalar>::DenseVector; | 
 |   // Use ASSparseMatrix to avoid collision with ceres::internal::SparseMatrix. | 
 |   using ASSparseMatrix = typename SparseTypesTrait<Scalar>::SparseMatrix; | 
 |   using SymbolicFactorization = | 
 |       typename SparseTypesTrait<Scalar>::SymbolicFactorization; | 
 |   using NumericFactorization = | 
 |       typename SparseTypesTrait<Scalar>::NumericFactorization; | 
 |  | 
 |   // Solves a linear system given its symbolic (reference counted within | 
 |   // NumericFactorization) and numeric factorization. | 
 |   void Solve(NumericFactorization* numeric_factor, | 
 |              DenseVector* rhs_and_solution); | 
 |  | 
 |   // Note: Accelerate's API passes/returns its objects by value, but as the | 
 |   //       objects contain pointers to the underlying data these copies are | 
 |   //       all shallow (in some cases Accelerate also reference counts the | 
 |   //       objects internally). | 
 |   ASSparseMatrix CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); | 
 |   // Computes a symbolic factorisation of A that can be used in Solve(). | 
 |   SymbolicFactorization AnalyzeCholesky(OrderingType ordering_type, | 
 |                                         ASSparseMatrix* A); | 
 |   // Compute the numeric Cholesky factorization of A, given its | 
 |   // symbolic factorization. | 
 |   NumericFactorization Cholesky(ASSparseMatrix* A, | 
 |                                 SymbolicFactorization* symbolic_factor); | 
 |   // Reuse the NumericFactorization from a previous matrix with the same | 
 |   // symbolic factorization to represent a new numeric factorization. | 
 |   void Cholesky(ASSparseMatrix* A, NumericFactorization* numeric_factor); | 
 |  | 
 |  private: | 
 |   std::vector<long> column_starts_; | 
 |   std::vector<uint8_t> solve_workspace_; | 
 |   std::vector<uint8_t> factorization_workspace_; | 
 |   // Storage for the values of A if Scalar != double (necessitating a copy). | 
 |   Eigen::Matrix<Scalar, Eigen::Dynamic, 1> values_; | 
 | }; | 
 |  | 
 | // An implementation of SparseCholesky interface using Apple's Accelerate | 
 | // framework. | 
 | template <typename Scalar> | 
 | class AppleAccelerateCholesky final : public SparseCholesky { | 
 |  public: | 
 |   // Factory | 
 |   static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type); | 
 |  | 
 |   // SparseCholesky interface. | 
 |   virtual ~AppleAccelerateCholesky(); | 
 |   CompressedRowSparseMatrix::StorageType StorageType() const; | 
 |   LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs, | 
 |                                         std::string* message) final; | 
 |   LinearSolverTerminationType Solve(const double* rhs, | 
 |                                     double* solution, | 
 |                                     std::string* message) final; | 
 |  | 
 |  private: | 
 |   AppleAccelerateCholesky(const OrderingType ordering_type); | 
 |   void FreeSymbolicFactorization(); | 
 |   void FreeNumericFactorization(); | 
 |  | 
 |   const OrderingType ordering_type_; | 
 |   AccelerateSparse<Scalar> as_; | 
 |   std::unique_ptr<typename AccelerateSparse<Scalar>::SymbolicFactorization> | 
 |       symbolic_factor_; | 
 |   std::unique_ptr<typename AccelerateSparse<Scalar>::NumericFactorization> | 
 |       numeric_factor_; | 
 |   // Copy of rhs/solution if Scalar != double (necessitating a copy). | 
 |   Eigen::Matrix<Scalar, Eigen::Dynamic, 1> scalar_rhs_and_solution_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_NO_ACCELERATE_SPARSE | 
 |  | 
 | #endif  // CERES_INTERNAL_ACCELERATE_SPARSE_H_ |