| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) | 
 |  | 
 | #include "ceres/internal/config.h" | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 |  | 
 | #include <glog/logging.h> | 
 | #include <gtest/gtest.h> | 
 |  | 
 | #include <numeric> | 
 |  | 
 | #include "ceres/cuda_streamed_buffer.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | TEST(CudaStreamedBufferTest, IntegerCopy) { | 
 |   // Offsets and sizes of batches supplied to callback | 
 |   std::vector<std::pair<int, int>> batches; | 
 |   const int kMaxTemporaryArraySize = 16; | 
 |   const int kInputSize = kMaxTemporaryArraySize * 7 + 3; | 
 |   ContextImpl context; | 
 |   std::string message; | 
 |   CHECK(context.InitCuda(&message)) << "InitCuda() failed because: " << message; | 
 |  | 
 |   std::vector<int> inputs(kInputSize); | 
 |   std::vector<int> outputs(kInputSize, -1); | 
 |   std::iota(inputs.begin(), inputs.end(), 0); | 
 |  | 
 |   CudaStreamedBuffer<int> streamed_buffer(&context, kMaxTemporaryArraySize); | 
 |   streamed_buffer.CopyToGpu(inputs.data(), | 
 |                             kInputSize, | 
 |                             [&outputs, &batches](const int* device_pointer, | 
 |                                                  int size, | 
 |                                                  int offset, | 
 |                                                  cudaStream_t stream) { | 
 |                               batches.emplace_back(offset, size); | 
 |                               CHECK_EQ(cudaSuccess, | 
 |                                        cudaMemcpyAsync(outputs.data() + offset, | 
 |                                                        device_pointer, | 
 |                                                        sizeof(int) * size, | 
 |                                                        cudaMemcpyDeviceToHost, | 
 |                                                        stream)); | 
 |                             }); | 
 |   // All operations in all streams should be completed when CopyToGpu returns | 
 |   // control to the callee | 
 |   for (int i = 0; i < ContextImpl::kNumCudaStreams; ++i) { | 
 |     CHECK_EQ(cudaSuccess, cudaStreamQuery(context.streams_[i])); | 
 |   } | 
 |  | 
 |   // Check if every element was visited | 
 |   for (int i = 0; i < kInputSize; ++i) { | 
 |     CHECK_EQ(outputs[i], i); | 
 |   } | 
 |  | 
 |   // Check if there is no overlap between batches | 
 |   std::sort(batches.begin(), batches.end()); | 
 |   const int num_batches = batches.size(); | 
 |   for (int i = 0; i < num_batches; ++i) { | 
 |     const auto [begin, size] = batches[i]; | 
 |     const int end = begin + size; | 
 |     CHECK_GE(begin, 0); | 
 |     CHECK_LT(begin, kInputSize); | 
 |  | 
 |     CHECK_GT(size, 0); | 
 |     CHECK_LE(end, kInputSize); | 
 |  | 
 |     if (i + 1 == num_batches) continue; | 
 |     CHECK_EQ(end, batches[i + 1].first); | 
 |   } | 
 | } | 
 |  | 
 | TEST(CudaStreamedBufferTest, IntegerNoCopy) { | 
 |   // Offsets and sizes of batches supplied to callback | 
 |   std::vector<std::pair<int, int>> batches; | 
 |   const int kMaxTemporaryArraySize = 16; | 
 |   const int kInputSize = kMaxTemporaryArraySize * 7 + 3; | 
 |   ContextImpl context; | 
 |   std::string message; | 
 |   CHECK(context.InitCuda(&message)) << "InitCuda() failed because: " << message; | 
 |  | 
 |   int* inputs; | 
 |   int* outputs; | 
 |   CHECK_EQ(cudaSuccess, | 
 |            cudaHostAlloc( | 
 |                &inputs, sizeof(int) * kInputSize, cudaHostAllocWriteCombined)); | 
 |   CHECK_EQ( | 
 |       cudaSuccess, | 
 |       cudaHostAlloc(&outputs, sizeof(int) * kInputSize, cudaHostAllocDefault)); | 
 |  | 
 |   std::fill(outputs, outputs + kInputSize, -1); | 
 |   std::iota(inputs, inputs + kInputSize, 0); | 
 |  | 
 |   CudaStreamedBuffer<int> streamed_buffer(&context, kMaxTemporaryArraySize); | 
 |   streamed_buffer.CopyToGpu(inputs, | 
 |                             kInputSize, | 
 |                             [outputs, &batches](const int* device_pointer, | 
 |                                                 int size, | 
 |                                                 int offset, | 
 |                                                 cudaStream_t stream) { | 
 |                               batches.emplace_back(offset, size); | 
 |                               CHECK_EQ(cudaSuccess, | 
 |                                        cudaMemcpyAsync(outputs + offset, | 
 |                                                        device_pointer, | 
 |                                                        sizeof(int) * size, | 
 |                                                        cudaMemcpyDeviceToHost, | 
 |                                                        stream)); | 
 |                             }); | 
 |   // All operations in all streams should be completed when CopyToGpu returns | 
 |   // control to the callee | 
 |   for (int i = 0; i < ContextImpl::kNumCudaStreams; ++i) { | 
 |     CHECK_EQ(cudaSuccess, cudaStreamQuery(context.streams_[i])); | 
 |   } | 
 |  | 
 |   // Check if every element was visited | 
 |   for (int i = 0; i < kInputSize; ++i) { | 
 |     CHECK_EQ(outputs[i], i); | 
 |   } | 
 |  | 
 |   // Check if there is no overlap between batches | 
 |   std::sort(batches.begin(), batches.end()); | 
 |   const int num_batches = batches.size(); | 
 |   for (int i = 0; i < num_batches; ++i) { | 
 |     const auto [begin, size] = batches[i]; | 
 |     const int end = begin + size; | 
 |     CHECK_GE(begin, 0); | 
 |     CHECK_LT(begin, kInputSize); | 
 |  | 
 |     CHECK_GT(size, 0); | 
 |     CHECK_LE(end, kInputSize); | 
 |  | 
 |     if (i + 1 == num_batches) continue; | 
 |     CHECK_EQ(end, batches[i + 1].first); | 
 |   } | 
 |  | 
 |   CHECK_EQ(cudaSuccess, cudaFreeHost(inputs)); | 
 |   CHECK_EQ(cudaSuccess, cudaFreeHost(outputs)); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal | 
 |  | 
 | #endif  // CERES_NO_CUDA |