| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/loss_function.h" |
| |
| #include <cstddef> |
| |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| namespace { |
| |
| // Helper function for testing a LossFunction callback. |
| // |
| // Compares the values of rho'(s) and rho''(s) computed by the |
| // callback with estimates obtained by symmetric finite differencing |
| // of rho(s). |
| void AssertLossFunctionIsValid(const LossFunction& loss, double s) { |
| CHECK_GT(s, 0); |
| |
| // Evaluate rho(s), rho'(s) and rho''(s). |
| double rho[3]; |
| loss.Evaluate(s, rho); |
| |
| // Use symmetric finite differencing to estimate rho'(s) and |
| // rho''(s). |
| const double kH = 1e-4; |
| // Values at s + kH. |
| double fwd[3]; |
| // Values at s - kH. |
| double bwd[3]; |
| loss.Evaluate(s + kH, fwd); |
| loss.Evaluate(s - kH, bwd); |
| |
| // First derivative. |
| const double fd_1 = (fwd[0] - bwd[0]) / (2 * kH); |
| ASSERT_NEAR(fd_1, rho[1], 1e-6); |
| |
| // Second derivative. |
| const double fd_2 = (fwd[0] - 2*rho[0] + bwd[0]) / (kH * kH); |
| ASSERT_NEAR(fd_2, rho[2], 1e-6); |
| } |
| } // namespace |
| |
| // Try two values of the scaling a = 0.7 and 1.3 |
| // (where scaling makes sense) and of the squared norm |
| // s = 0.357 and 1.792 |
| // |
| // Note that for the Huber loss the test exercises both code paths |
| // (i.e. both small and large values of s). |
| |
| TEST(LossFunction, TrivialLoss) { |
| AssertLossFunctionIsValid(TrivialLoss(), 0.357); |
| AssertLossFunctionIsValid(TrivialLoss(), 1.792); |
| // Check that at s = 0: rho = [0, 1, 0]. |
| double rho[3]; |
| TrivialLoss().Evaluate(0.0, rho); |
| ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| ASSERT_NEAR(rho[2], 0.0, 1e-6); |
| } |
| |
| TEST(LossFunction, HuberLoss) { |
| AssertLossFunctionIsValid(HuberLoss(0.7), 0.357); |
| AssertLossFunctionIsValid(HuberLoss(0.7), 1.792); |
| AssertLossFunctionIsValid(HuberLoss(1.3), 0.357); |
| AssertLossFunctionIsValid(HuberLoss(1.3), 1.792); |
| // Check that at s = 0: rho = [0, 1, 0]. |
| double rho[3]; |
| HuberLoss(0.7).Evaluate(0.0, rho); |
| ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| ASSERT_NEAR(rho[2], 0.0, 1e-6); |
| } |
| |
| TEST(LossFunction, SoftLOneLoss) { |
| AssertLossFunctionIsValid(SoftLOneLoss(0.7), 0.357); |
| AssertLossFunctionIsValid(SoftLOneLoss(0.7), 1.792); |
| AssertLossFunctionIsValid(SoftLOneLoss(1.3), 0.357); |
| AssertLossFunctionIsValid(SoftLOneLoss(1.3), 1.792); |
| // Check that at s = 0: rho = [0, 1, -1 / (2 * a^2)]. |
| double rho[3]; |
| SoftLOneLoss(0.7).Evaluate(0.0, rho); |
| ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| ASSERT_NEAR(rho[2], -0.5 / (0.7 * 0.7), 1e-6); |
| } |
| |
| TEST(LossFunction, CauchyLoss) { |
| AssertLossFunctionIsValid(CauchyLoss(0.7), 0.357); |
| AssertLossFunctionIsValid(CauchyLoss(0.7), 1.792); |
| AssertLossFunctionIsValid(CauchyLoss(1.3), 0.357); |
| AssertLossFunctionIsValid(CauchyLoss(1.3), 1.792); |
| // Check that at s = 0: rho = [0, 1, -1 / a^2]. |
| double rho[3]; |
| CauchyLoss(0.7).Evaluate(0.0, rho); |
| ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| ASSERT_NEAR(rho[2], -1.0 / (0.7 * 0.7), 1e-6); |
| } |
| |
| TEST(LossFunction, ArctanLoss) { |
| AssertLossFunctionIsValid(ArctanLoss(0.7), 0.357); |
| AssertLossFunctionIsValid(ArctanLoss(0.7), 1.792); |
| AssertLossFunctionIsValid(ArctanLoss(1.3), 0.357); |
| AssertLossFunctionIsValid(ArctanLoss(1.3), 1.792); |
| // Check that at s = 0: rho = [0, 1, 0]. |
| double rho[3]; |
| ArctanLoss(0.7).Evaluate(0.0, rho); |
| ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| ASSERT_NEAR(rho[2], 0.0, 1e-6); |
| } |
| |
| TEST(LossFunction, TolerantLoss) { |
| AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 0.357); |
| AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 1.792); |
| AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 55.5); |
| AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 0.357); |
| AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 1.792); |
| AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 55.5); |
| // Check the value at zero is actually zero. |
| double rho[3]; |
| TolerantLoss(0.7, 0.4).Evaluate(0.0, rho); |
| ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| // Check that loss before and after the approximation threshold are good. |
| // A threshold of 36.7 is used by the implementation. |
| AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.6); |
| AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.7); |
| AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.8); |
| AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 1000.0); |
| } |
| |
| TEST(LossFunction, TukeyLoss) { |
| AssertLossFunctionIsValid(TukeyLoss(0.7), 0.357); |
| AssertLossFunctionIsValid(TukeyLoss(0.7), 1.792); |
| AssertLossFunctionIsValid(TukeyLoss(1.3), 0.357); |
| AssertLossFunctionIsValid(TukeyLoss(1.3), 1.792); |
| // Check that at s = 0: rho = [0, 1, -2 / a^2]. |
| double rho[3]; |
| TukeyLoss(0.7).Evaluate(0.0, rho); |
| ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| ASSERT_NEAR(rho[2], -2.0 / (0.7 * 0.7), 1e-6); |
| } |
| |
| TEST(LossFunction, ComposedLoss) { |
| { |
| HuberLoss f(0.7); |
| CauchyLoss g(1.3); |
| ComposedLoss c(&f, DO_NOT_TAKE_OWNERSHIP, &g, DO_NOT_TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(c, 0.357); |
| AssertLossFunctionIsValid(c, 1.792); |
| } |
| { |
| CauchyLoss f(0.7); |
| HuberLoss g(1.3); |
| ComposedLoss c(&f, DO_NOT_TAKE_OWNERSHIP, &g, DO_NOT_TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(c, 0.357); |
| AssertLossFunctionIsValid(c, 1.792); |
| } |
| } |
| |
| TEST(LossFunction, ScaledLoss) { |
| // Wrap a few loss functions, and a few scale factors. This can't combine |
| // construction with the call to AssertLossFunctionIsValid() because Apple's |
| // GCC is unable to eliminate the copy of ScaledLoss, which is not copyable. |
| { |
| ScaledLoss scaled_loss(NULL, 6, TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(scaled_loss, 0.323); |
| } |
| { |
| ScaledLoss scaled_loss(new TrivialLoss(), 10, TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(scaled_loss, 0.357); |
| } |
| { |
| ScaledLoss scaled_loss(new HuberLoss(0.7), 0.1, TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(scaled_loss, 1.792); |
| } |
| { |
| ScaledLoss scaled_loss(new SoftLOneLoss(1.3), 0.1, TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(scaled_loss, 1.792); |
| } |
| { |
| ScaledLoss scaled_loss(new CauchyLoss(1.3), 10, TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(scaled_loss, 1.792); |
| } |
| { |
| ScaledLoss scaled_loss(new ArctanLoss(1.3), 10, TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(scaled_loss, 1.792); |
| } |
| { |
| ScaledLoss scaled_loss( |
| new TolerantLoss(1.3, 0.1), 10, TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(scaled_loss, 1.792); |
| } |
| { |
| ScaledLoss scaled_loss( |
| new ComposedLoss( |
| new HuberLoss(0.8), TAKE_OWNERSHIP, |
| new TolerantLoss(1.3, 0.5), TAKE_OWNERSHIP), 10, TAKE_OWNERSHIP); |
| AssertLossFunctionIsValid(scaled_loss, 1.792); |
| } |
| } |
| |
| TEST(LossFunction, LossFunctionWrapper) { |
| // Initialization |
| HuberLoss loss_function1(1.0); |
| LossFunctionWrapper loss_function_wrapper(new HuberLoss(1.0), |
| TAKE_OWNERSHIP); |
| |
| double s = 0.862; |
| double rho_gold[3]; |
| double rho[3]; |
| loss_function1.Evaluate(s, rho_gold); |
| loss_function_wrapper.Evaluate(s, rho); |
| for (int i = 0; i < 3; ++i) { |
| EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| } |
| |
| // Resetting |
| HuberLoss loss_function2(0.5); |
| loss_function_wrapper.Reset(new HuberLoss(0.5), TAKE_OWNERSHIP); |
| loss_function_wrapper.Evaluate(s, rho); |
| loss_function2.Evaluate(s, rho_gold); |
| for (int i = 0; i < 3; ++i) { |
| EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| } |
| |
| // Not taking ownership. |
| HuberLoss loss_function3(0.3); |
| loss_function_wrapper.Reset(&loss_function3, DO_NOT_TAKE_OWNERSHIP); |
| loss_function_wrapper.Evaluate(s, rho); |
| loss_function3.Evaluate(s, rho_gold); |
| for (int i = 0; i < 3; ++i) { |
| EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| } |
| |
| // Set to NULL |
| TrivialLoss loss_function4; |
| loss_function_wrapper.Reset(NULL, TAKE_OWNERSHIP); |
| loss_function_wrapper.Evaluate(s, rho); |
| loss_function4.Evaluate(s, rho_gold); |
| for (int i = 0; i < 3; ++i) { |
| EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| } |
| |
| // Set to NULL, not taking ownership |
| loss_function_wrapper.Reset(NULL, DO_NOT_TAKE_OWNERSHIP); |
| loss_function_wrapper.Evaluate(s, rho); |
| loss_function4.Evaluate(s, rho_gold); |
| for (int i = 0; i < 3; ++i) { |
| EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| } |
| |
| } |
| |
| } // namespace internal |
| } // namespace ceres |