| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| |
| #include "ceres/cuda_kernels_bsm_to_crs.h" |
| |
| #include <cuda_runtime.h> |
| #include <thrust/execution_policy.h> |
| #include <thrust/scan.h> |
| |
| #include "ceres/block_structure.h" |
| #include "ceres/cuda_kernels_utils.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| namespace { |
| inline auto ThrustCudaStreamExecutionPolicy(cudaStream_t stream) { |
| // par_nosync execution policy was added in Thrust 1.16 |
| // https://github.com/NVIDIA/thrust/blob/main/CHANGELOG.md#thrust-1160 |
| #if THRUST_VERSION < 101700 |
| return thrust::cuda::par.on(stream); |
| #else |
| return thrust::cuda::par_nosync.on(stream); |
| #endif |
| } |
| // Allocate temporary memory on gpu, avoiding synchronization if possible |
| template <typename T> |
| T* AllocateTemporaryMemory(size_t num_elements, cudaStream_t stream) { |
| T* data; |
| // Stream-ordered alloactions are available since CUDA 11.4 |
| #if CUDART_VERSION < 11040 |
| #warning \ |
| "Stream-ordered allocations are unavailable, consider updating CUDA toolkit" |
| cudaMalloc(&data, sizeof(T) * num_elements); |
| #else |
| cudaMallocAsync(&data, sizeof(T) * num_elements, stream); |
| #endif |
| return data; |
| } |
| |
| void FreeTemporaryMemory(void* data, cudaStream_t stream) { |
| // Stream-ordered alloactions are available since CUDA 11.4 |
| #if CUDART_VERSION < 11040 |
| #warning \ |
| "Stream-ordered allocations are unavailable, consider updating CUDA toolkit" |
| cudaFree(data); |
| #else |
| cudaFreeAsync(data, stream); |
| #endif |
| } |
| } // namespace |
| |
| // Fill row block id and nnz for each row using block-sparse structure |
| // represented by a set of flat arrays. |
| // Inputs: |
| // - num_row_blocks: number of row-blocks in block-sparse structure |
| // - first_cell_in_row_block: index of the first cell of the row-block; size: |
| // num_row_blocks + 1 |
| // - cells: cells of block-sparse structure as a continuous array |
| // - row_blocks: row blocks of block-sparse structure stored sequentially |
| // - col_blocks: column blocks of block-sparse structure stored sequentially |
| // Outputs: |
| // - rows: rows[i + 1] will contain number of non-zeros in i-th row, rows[0] |
| // will be set to 0; rows are filled with a shift by one element in order |
| // to obtain row-index array of CRS matrix with a inclusive scan afterwards |
| // - row_block_ids: row_block_ids[i] will be set to index of row-block that |
| // contains i-th row. |
| // Computation is perform row-block-wise |
| template <bool partitioned = false> |
| __global__ void RowBlockIdAndNNZ( |
| const int num_row_blocks, |
| const int num_col_blocks_e, |
| const int num_row_blocks_e, |
| const int* __restrict__ first_cell_in_row_block, |
| const Cell* __restrict__ cells, |
| const Block* __restrict__ row_blocks, |
| const Block* __restrict__ col_blocks, |
| int* __restrict__ rows_e, |
| int* __restrict__ rows_f, |
| int* __restrict__ row_block_ids) { |
| const int row_block_id = blockIdx.x * blockDim.x + threadIdx.x; |
| if (row_block_id > num_row_blocks) { |
| // No synchronization is performed in this kernel, thus it is safe to return |
| return; |
| } |
| if (row_block_id == num_row_blocks) { |
| // one extra thread sets the first element |
| rows_f[0] = 0; |
| if constexpr (partitioned) { |
| rows_e[0] = 0; |
| } |
| return; |
| } |
| const auto& row_block = row_blocks[row_block_id]; |
| auto first_cell = cells + first_cell_in_row_block[row_block_id]; |
| const auto last_cell = cells + first_cell_in_row_block[row_block_id + 1]; |
| int row_nnz_e = 0; |
| if (partitioned && row_block_id < num_row_blocks_e) { |
| // First cell is a cell from E |
| row_nnz_e = col_blocks[first_cell->block_id].size; |
| ++first_cell; |
| } |
| int row_nnz_f = 0; |
| for (auto cell = first_cell; cell < last_cell; ++cell) { |
| row_nnz_f += col_blocks[cell->block_id].size; |
| } |
| const int first_row = row_block.position; |
| const int last_row = first_row + row_block.size; |
| for (int i = first_row; i < last_row; ++i) { |
| if constexpr (partitioned) { |
| rows_e[i + 1] = row_nnz_e; |
| } |
| rows_f[i + 1] = row_nnz_f; |
| row_block_ids[i] = row_block_id; |
| } |
| } |
| |
| // Row-wise creation of CRS structure |
| // Inputs: |
| // - num_rows: number of rows in matrix |
| // - first_cell_in_row_block: index of the first cell of the row-block; size: |
| // num_row_blocks + 1 |
| // - cells: cells of block-sparse structure as a continuous array |
| // - row_blocks: row blocks of block-sparse structure stored sequentially |
| // - col_blocks: column blocks of block-sparse structure stored sequentially |
| // - row_block_ids: index of row-block that corresponds to row |
| // - rows: row-index array of CRS structure |
| // Outputs: |
| // - cols: column-index array of CRS structure |
| // Computaion is perform row-wise |
| template <bool partitioned> |
| __global__ void ComputeColumns(const int num_rows, |
| const int num_row_blocks_e, |
| const int num_col_blocks_e, |
| const int* __restrict__ first_cell_in_row_block, |
| const Cell* __restrict__ cells, |
| const Block* __restrict__ row_blocks, |
| const Block* __restrict__ col_blocks, |
| const int* __restrict__ row_block_ids, |
| const int* __restrict__ rows_e, |
| int* __restrict__ cols_e, |
| const int* __restrict__ rows_f, |
| int* __restrict__ cols_f) { |
| const int row = blockIdx.x * blockDim.x + threadIdx.x; |
| if (row >= num_rows) { |
| // No synchronization is performed in this kernel, thus it is safe to return |
| return; |
| } |
| const int row_block_id = row_block_ids[row]; |
| // position in crs matrix |
| auto first_cell = cells + first_cell_in_row_block[row_block_id]; |
| const auto last_cell = cells + first_cell_in_row_block[row_block_id + 1]; |
| const int num_cols_e = col_blocks[num_col_blocks_e].position; |
| // For reach cell of row-block only current row is being filled |
| if (partitioned && row_block_id < num_row_blocks_e) { |
| // The first cell is cell from E |
| const auto& col_block = col_blocks[first_cell->block_id]; |
| const int col_block_size = col_block.size; |
| int column_idx = col_block.position; |
| int crs_position_e = rows_e[row]; |
| // Column indices for each element of row_in_block row of current cell |
| for (int i = 0; i < col_block_size; ++i, ++crs_position_e) { |
| cols_e[crs_position_e] = column_idx++; |
| } |
| ++first_cell; |
| } |
| int crs_position_f = rows_f[row]; |
| for (auto cell = first_cell; cell < last_cell; ++cell) { |
| const auto& col_block = col_blocks[cell->block_id]; |
| const int col_block_size = col_block.size; |
| int column_idx = col_block.position - num_cols_e; |
| // Column indices for each element of row_in_block row of current cell |
| for (int i = 0; i < col_block_size; ++i, ++crs_position_f) { |
| cols_f[crs_position_f] = column_idx++; |
| } |
| } |
| } |
| |
| void FillCRSStructure(const int num_row_blocks, |
| const int num_rows, |
| const int* first_cell_in_row_block, |
| const Cell* cells, |
| const Block* row_blocks, |
| const Block* col_blocks, |
| int* rows, |
| int* cols, |
| cudaStream_t stream) { |
| // Set number of non-zeros per row in rows array and row to row-block map in |
| // row_block_ids array |
| int* row_block_ids = AllocateTemporaryMemory<int>(num_rows, stream); |
| const int num_blocks_blockwise = NumBlocksInGrid(num_row_blocks + 1); |
| RowBlockIdAndNNZ<false><<<num_blocks_blockwise, kCudaBlockSize, 0, stream>>>( |
| num_row_blocks, |
| 0, |
| 0, |
| first_cell_in_row_block, |
| cells, |
| row_blocks, |
| col_blocks, |
| nullptr, |
| rows, |
| row_block_ids); |
| // Finalize row-index array of CRS strucure by computing prefix sum |
| thrust::inclusive_scan( |
| ThrustCudaStreamExecutionPolicy(stream), rows, rows + num_rows + 1, rows); |
| |
| // Fill cols array of CRS structure |
| const int num_blocks_rowwise = NumBlocksInGrid(num_rows); |
| ComputeColumns<false><<<num_blocks_rowwise, kCudaBlockSize, 0, stream>>>( |
| num_rows, |
| 0, |
| 0, |
| first_cell_in_row_block, |
| cells, |
| row_blocks, |
| col_blocks, |
| row_block_ids, |
| nullptr, |
| nullptr, |
| rows, |
| cols); |
| FreeTemporaryMemory(row_block_ids, stream); |
| } |
| |
| void FillCRSStructurePartitioned(const int num_row_blocks, |
| const int num_rows, |
| const int num_row_blocks_e, |
| const int num_col_blocks_e, |
| const int num_nonzeros_e, |
| const int* first_cell_in_row_block, |
| const Cell* cells, |
| const Block* row_blocks, |
| const Block* col_blocks, |
| int* rows_e, |
| int* cols_e, |
| int* rows_f, |
| int* cols_f, |
| cudaStream_t stream) { |
| // Set number of non-zeros per row in rows array and row to row-block map in |
| // row_block_ids array |
| int* row_block_ids = AllocateTemporaryMemory<int>(num_rows, stream); |
| const int num_blocks_blockwise = NumBlocksInGrid(num_row_blocks + 1); |
| RowBlockIdAndNNZ<true><<<num_blocks_blockwise, kCudaBlockSize, 0, stream>>>( |
| num_row_blocks, |
| num_col_blocks_e, |
| num_row_blocks_e, |
| first_cell_in_row_block, |
| cells, |
| row_blocks, |
| col_blocks, |
| rows_e, |
| rows_f, |
| row_block_ids); |
| // Finalize row-index array of CRS strucure by computing prefix sum |
| thrust::inclusive_scan(ThrustCudaStreamExecutionPolicy(stream), |
| rows_e, |
| rows_e + num_rows + 1, |
| rows_e); |
| thrust::inclusive_scan(ThrustCudaStreamExecutionPolicy(stream), |
| rows_f, |
| rows_f + num_rows + 1, |
| rows_f); |
| |
| // Fill cols array of CRS structure |
| const int num_blocks_rowwise = NumBlocksInGrid(num_rows); |
| ComputeColumns<true><<<num_blocks_rowwise, kCudaBlockSize, 0, stream>>>( |
| num_rows, |
| num_row_blocks_e, |
| num_col_blocks_e, |
| first_cell_in_row_block, |
| cells, |
| row_blocks, |
| col_blocks, |
| row_block_ids, |
| rows_e, |
| cols_e, |
| rows_f, |
| cols_f); |
| FreeTemporaryMemory(row_block_ids, stream); |
| } |
| |
| template <typename T, typename Predicate> |
| __device__ int PartitionPoint(const T* data, |
| int first, |
| int last, |
| Predicate&& predicate) { |
| if (!predicate(data[first])) { |
| return first; |
| } |
| while (last - first > 1) { |
| const auto midpoint = first + (last - first) / 2; |
| if (predicate(data[midpoint])) { |
| first = midpoint; |
| } else { |
| last = midpoint; |
| } |
| } |
| return last; |
| } |
| |
| // Element-wise reordering of block-sparse values |
| // - first_cell_in_row_block - position of the first cell of row-block |
| // - block_sparse_values - segment of block-sparse values starting from |
| // block_sparse_offset, containing num_values |
| template <bool partitioned> |
| __global__ void PermuteToCrsKernel( |
| const int block_sparse_offset, |
| const int num_values, |
| const int num_row_blocks, |
| const int num_row_blocks_e, |
| const int* __restrict__ first_cell_in_row_block, |
| const int* __restrict__ value_offset_row_block_f, |
| const Cell* __restrict__ cells, |
| const Block* __restrict__ row_blocks, |
| const Block* __restrict__ col_blocks, |
| const int* __restrict__ crs_rows, |
| const double* __restrict__ block_sparse_values, |
| double* __restrict__ crs_values) { |
| const int value_id = blockIdx.x * blockDim.x + threadIdx.x; |
| if (value_id >= num_values) { |
| return; |
| } |
| const int block_sparse_value_id = value_id + block_sparse_offset; |
| // Find the corresponding row-block with a binary search |
| const int row_block_id = |
| (partitioned |
| ? PartitionPoint(value_offset_row_block_f, |
| 0, |
| num_row_blocks, |
| [block_sparse_value_id] __device__( |
| const int row_block_offset) { |
| return row_block_offset <= block_sparse_value_id; |
| }) |
| : PartitionPoint(first_cell_in_row_block, |
| 0, |
| num_row_blocks, |
| [cells, block_sparse_value_id] __device__( |
| const int row_block_offset) { |
| return cells[row_block_offset].position <= |
| block_sparse_value_id; |
| })) - |
| 1; |
| // Find cell and calculate offset within the row with a linear scan |
| const auto& row_block = row_blocks[row_block_id]; |
| auto first_cell = cells + first_cell_in_row_block[row_block_id]; |
| const auto last_cell = cells + first_cell_in_row_block[row_block_id + 1]; |
| const int row_block_size = row_block.size; |
| int num_cols_before = 0; |
| if (partitioned && row_block_id < num_row_blocks_e) { |
| ++first_cell; |
| } |
| for (const Cell* cell = first_cell; cell < last_cell; ++cell) { |
| const auto& col_block = col_blocks[cell->block_id]; |
| const int col_block_size = col_block.size; |
| const int cell_size = row_block_size * col_block_size; |
| if (cell->position + cell_size > block_sparse_value_id) { |
| const int pos_in_cell = block_sparse_value_id - cell->position; |
| const int row_in_cell = pos_in_cell / col_block_size; |
| const int col_in_cell = pos_in_cell % col_block_size; |
| const int row = row_in_cell + row_block.position; |
| crs_values[crs_rows[row] + num_cols_before + col_in_cell] = |
| block_sparse_values[value_id]; |
| break; |
| } |
| num_cols_before += col_block_size; |
| } |
| } |
| |
| void PermuteToCRS(const int block_sparse_offset, |
| const int num_values, |
| const int num_row_blocks, |
| const int* first_cell_in_row_block, |
| const Cell* cells, |
| const Block* row_blocks, |
| const Block* col_blocks, |
| const int* crs_rows, |
| const double* block_sparse_values, |
| double* crs_values, |
| cudaStream_t stream) { |
| const int num_blocks_valuewise = NumBlocksInGrid(num_values); |
| PermuteToCrsKernel<false> |
| <<<num_blocks_valuewise, kCudaBlockSize, 0, stream>>>( |
| block_sparse_offset, |
| num_values, |
| num_row_blocks, |
| 0, |
| first_cell_in_row_block, |
| nullptr, |
| cells, |
| row_blocks, |
| col_blocks, |
| crs_rows, |
| block_sparse_values, |
| crs_values); |
| } |
| |
| void PermuteToCRSPartitionedF(const int block_sparse_offset, |
| const int num_values, |
| const int num_row_blocks, |
| const int num_row_blocks_e, |
| const int* first_cell_in_row_block, |
| const int* value_offset_row_block_f, |
| const Cell* cells, |
| const Block* row_blocks, |
| const Block* col_blocks, |
| const int* crs_rows, |
| const double* block_sparse_values, |
| double* crs_values, |
| cudaStream_t stream) { |
| const int num_blocks_valuewise = NumBlocksInGrid(num_values); |
| PermuteToCrsKernel<true><<<num_blocks_valuewise, kCudaBlockSize, 0, stream>>>( |
| block_sparse_offset, |
| num_values, |
| num_row_blocks, |
| num_row_blocks_e, |
| first_cell_in_row_block, |
| value_offset_row_block_f, |
| cells, |
| row_blocks, |
| col_blocks, |
| crs_rows, |
| block_sparse_values, |
| crs_values); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |