blob: 0a21c8d4eed3781d3b6d3fef76947bb6d4222536 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin)
#include "ceres/cuda_kernels_bsm_to_crs.h"
#include <cuda_runtime.h>
#include <thrust/execution_policy.h>
#include <thrust/scan.h>
#include "ceres/block_structure.h"
#include "ceres/cuda_kernels_utils.h"
namespace ceres {
namespace internal {
namespace {
inline auto ThrustCudaStreamExecutionPolicy(cudaStream_t stream) {
// par_nosync execution policy was added in Thrust 1.16
// https://github.com/NVIDIA/thrust/blob/main/CHANGELOG.md#thrust-1160
#if THRUST_VERSION < 101700
return thrust::cuda::par.on(stream);
#else
return thrust::cuda::par_nosync.on(stream);
#endif
}
// Allocate temporary memory on gpu, avoiding synchronization if possible
template <typename T>
T* AllocateTemporaryMemory(size_t num_elements, cudaStream_t stream) {
T* data;
// Stream-ordered alloactions are available since CUDA 11.4
#if CUDART_VERSION < 11040
#warning \
"Stream-ordered allocations are unavailable, consider updating CUDA toolkit"
cudaMalloc(&data, sizeof(T) * num_elements);
#else
cudaMallocAsync(&data, sizeof(T) * num_elements, stream);
#endif
return data;
}
void FreeTemporaryMemory(void* data, cudaStream_t stream) {
// Stream-ordered alloactions are available since CUDA 11.4
#if CUDART_VERSION < 11040
#warning \
"Stream-ordered allocations are unavailable, consider updating CUDA toolkit"
cudaFree(data);
#else
cudaFreeAsync(data, stream);
#endif
}
} // namespace
// Fill row block id and nnz for each row using block-sparse structure
// represented by a set of flat arrays.
// Inputs:
// - num_row_blocks: number of row-blocks in block-sparse structure
// - first_cell_in_row_block: index of the first cell of the row-block; size:
// num_row_blocks + 1
// - cells: cells of block-sparse structure as a continuous array
// - row_blocks: row blocks of block-sparse structure stored sequentially
// - col_blocks: column blocks of block-sparse structure stored sequentially
// Outputs:
// - rows: rows[i + 1] will contain number of non-zeros in i-th row, rows[0]
// will be set to 0; rows are filled with a shift by one element in order
// to obtain row-index array of CRS matrix with a inclusive scan afterwards
// - row_block_ids: row_block_ids[i] will be set to index of row-block that
// contains i-th row.
// Computation is perform row-block-wise
template <bool partitioned = false>
__global__ void RowBlockIdAndNNZ(
const int num_row_blocks,
const int num_col_blocks_e,
const int num_row_blocks_e,
const int* __restrict__ first_cell_in_row_block,
const Cell* __restrict__ cells,
const Block* __restrict__ row_blocks,
const Block* __restrict__ col_blocks,
int* __restrict__ rows_e,
int* __restrict__ rows_f,
int* __restrict__ row_block_ids) {
const int row_block_id = blockIdx.x * blockDim.x + threadIdx.x;
if (row_block_id > num_row_blocks) {
// No synchronization is performed in this kernel, thus it is safe to return
return;
}
if (row_block_id == num_row_blocks) {
// one extra thread sets the first element
rows_f[0] = 0;
if constexpr (partitioned) {
rows_e[0] = 0;
}
return;
}
const auto& row_block = row_blocks[row_block_id];
auto first_cell = cells + first_cell_in_row_block[row_block_id];
const auto last_cell = cells + first_cell_in_row_block[row_block_id + 1];
int row_nnz_e = 0;
if (partitioned && row_block_id < num_row_blocks_e) {
// First cell is a cell from E
row_nnz_e = col_blocks[first_cell->block_id].size;
++first_cell;
}
int row_nnz_f = 0;
for (auto cell = first_cell; cell < last_cell; ++cell) {
row_nnz_f += col_blocks[cell->block_id].size;
}
const int first_row = row_block.position;
const int last_row = first_row + row_block.size;
for (int i = first_row; i < last_row; ++i) {
if constexpr (partitioned) {
rows_e[i + 1] = row_nnz_e;
}
rows_f[i + 1] = row_nnz_f;
row_block_ids[i] = row_block_id;
}
}
// Row-wise creation of CRS structure
// Inputs:
// - num_rows: number of rows in matrix
// - first_cell_in_row_block: index of the first cell of the row-block; size:
// num_row_blocks + 1
// - cells: cells of block-sparse structure as a continuous array
// - row_blocks: row blocks of block-sparse structure stored sequentially
// - col_blocks: column blocks of block-sparse structure stored sequentially
// - row_block_ids: index of row-block that corresponds to row
// - rows: row-index array of CRS structure
// Outputs:
// - cols: column-index array of CRS structure
// Computaion is perform row-wise
template <bool partitioned>
__global__ void ComputeColumns(const int num_rows,
const int num_row_blocks_e,
const int num_col_blocks_e,
const int* __restrict__ first_cell_in_row_block,
const Cell* __restrict__ cells,
const Block* __restrict__ row_blocks,
const Block* __restrict__ col_blocks,
const int* __restrict__ row_block_ids,
const int* __restrict__ rows_e,
int* __restrict__ cols_e,
const int* __restrict__ rows_f,
int* __restrict__ cols_f) {
const int row = blockIdx.x * blockDim.x + threadIdx.x;
if (row >= num_rows) {
// No synchronization is performed in this kernel, thus it is safe to return
return;
}
const int row_block_id = row_block_ids[row];
// position in crs matrix
auto first_cell = cells + first_cell_in_row_block[row_block_id];
const auto last_cell = cells + first_cell_in_row_block[row_block_id + 1];
const int num_cols_e = col_blocks[num_col_blocks_e].position;
// For reach cell of row-block only current row is being filled
if (partitioned && row_block_id < num_row_blocks_e) {
// The first cell is cell from E
const auto& col_block = col_blocks[first_cell->block_id];
const int col_block_size = col_block.size;
int column_idx = col_block.position;
int crs_position_e = rows_e[row];
// Column indices for each element of row_in_block row of current cell
for (int i = 0; i < col_block_size; ++i, ++crs_position_e) {
cols_e[crs_position_e] = column_idx++;
}
++first_cell;
}
int crs_position_f = rows_f[row];
for (auto cell = first_cell; cell < last_cell; ++cell) {
const auto& col_block = col_blocks[cell->block_id];
const int col_block_size = col_block.size;
int column_idx = col_block.position - num_cols_e;
// Column indices for each element of row_in_block row of current cell
for (int i = 0; i < col_block_size; ++i, ++crs_position_f) {
cols_f[crs_position_f] = column_idx++;
}
}
}
void FillCRSStructure(const int num_row_blocks,
const int num_rows,
const int* first_cell_in_row_block,
const Cell* cells,
const Block* row_blocks,
const Block* col_blocks,
int* rows,
int* cols,
cudaStream_t stream) {
// Set number of non-zeros per row in rows array and row to row-block map in
// row_block_ids array
int* row_block_ids = AllocateTemporaryMemory<int>(num_rows, stream);
const int num_blocks_blockwise = NumBlocksInGrid(num_row_blocks + 1);
RowBlockIdAndNNZ<false><<<num_blocks_blockwise, kCudaBlockSize, 0, stream>>>(
num_row_blocks,
0,
0,
first_cell_in_row_block,
cells,
row_blocks,
col_blocks,
nullptr,
rows,
row_block_ids);
// Finalize row-index array of CRS strucure by computing prefix sum
thrust::inclusive_scan(
ThrustCudaStreamExecutionPolicy(stream), rows, rows + num_rows + 1, rows);
// Fill cols array of CRS structure
const int num_blocks_rowwise = NumBlocksInGrid(num_rows);
ComputeColumns<false><<<num_blocks_rowwise, kCudaBlockSize, 0, stream>>>(
num_rows,
0,
0,
first_cell_in_row_block,
cells,
row_blocks,
col_blocks,
row_block_ids,
nullptr,
nullptr,
rows,
cols);
FreeTemporaryMemory(row_block_ids, stream);
}
void FillCRSStructurePartitioned(const int num_row_blocks,
const int num_rows,
const int num_row_blocks_e,
const int num_col_blocks_e,
const int num_nonzeros_e,
const int* first_cell_in_row_block,
const Cell* cells,
const Block* row_blocks,
const Block* col_blocks,
int* rows_e,
int* cols_e,
int* rows_f,
int* cols_f,
cudaStream_t stream) {
// Set number of non-zeros per row in rows array and row to row-block map in
// row_block_ids array
int* row_block_ids = AllocateTemporaryMemory<int>(num_rows, stream);
const int num_blocks_blockwise = NumBlocksInGrid(num_row_blocks + 1);
RowBlockIdAndNNZ<true><<<num_blocks_blockwise, kCudaBlockSize, 0, stream>>>(
num_row_blocks,
num_col_blocks_e,
num_row_blocks_e,
first_cell_in_row_block,
cells,
row_blocks,
col_blocks,
rows_e,
rows_f,
row_block_ids);
// Finalize row-index array of CRS strucure by computing prefix sum
thrust::inclusive_scan(ThrustCudaStreamExecutionPolicy(stream),
rows_e,
rows_e + num_rows + 1,
rows_e);
thrust::inclusive_scan(ThrustCudaStreamExecutionPolicy(stream),
rows_f,
rows_f + num_rows + 1,
rows_f);
// Fill cols array of CRS structure
const int num_blocks_rowwise = NumBlocksInGrid(num_rows);
ComputeColumns<true><<<num_blocks_rowwise, kCudaBlockSize, 0, stream>>>(
num_rows,
num_row_blocks_e,
num_col_blocks_e,
first_cell_in_row_block,
cells,
row_blocks,
col_blocks,
row_block_ids,
rows_e,
cols_e,
rows_f,
cols_f);
FreeTemporaryMemory(row_block_ids, stream);
}
template <typename T, typename Predicate>
__device__ int PartitionPoint(const T* data,
int first,
int last,
Predicate&& predicate) {
if (!predicate(data[first])) {
return first;
}
while (last - first > 1) {
const auto midpoint = first + (last - first) / 2;
if (predicate(data[midpoint])) {
first = midpoint;
} else {
last = midpoint;
}
}
return last;
}
// Element-wise reordering of block-sparse values
// - first_cell_in_row_block - position of the first cell of row-block
// - block_sparse_values - segment of block-sparse values starting from
// block_sparse_offset, containing num_values
template <bool partitioned>
__global__ void PermuteToCrsKernel(
const int block_sparse_offset,
const int num_values,
const int num_row_blocks,
const int num_row_blocks_e,
const int* __restrict__ first_cell_in_row_block,
const int* __restrict__ value_offset_row_block_f,
const Cell* __restrict__ cells,
const Block* __restrict__ row_blocks,
const Block* __restrict__ col_blocks,
const int* __restrict__ crs_rows,
const double* __restrict__ block_sparse_values,
double* __restrict__ crs_values) {
const int value_id = blockIdx.x * blockDim.x + threadIdx.x;
if (value_id >= num_values) {
return;
}
const int block_sparse_value_id = value_id + block_sparse_offset;
// Find the corresponding row-block with a binary search
const int row_block_id =
(partitioned
? PartitionPoint(value_offset_row_block_f,
0,
num_row_blocks,
[block_sparse_value_id] __device__(
const int row_block_offset) {
return row_block_offset <= block_sparse_value_id;
})
: PartitionPoint(first_cell_in_row_block,
0,
num_row_blocks,
[cells, block_sparse_value_id] __device__(
const int row_block_offset) {
return cells[row_block_offset].position <=
block_sparse_value_id;
})) -
1;
// Find cell and calculate offset within the row with a linear scan
const auto& row_block = row_blocks[row_block_id];
auto first_cell = cells + first_cell_in_row_block[row_block_id];
const auto last_cell = cells + first_cell_in_row_block[row_block_id + 1];
const int row_block_size = row_block.size;
int num_cols_before = 0;
if (partitioned && row_block_id < num_row_blocks_e) {
++first_cell;
}
for (const Cell* cell = first_cell; cell < last_cell; ++cell) {
const auto& col_block = col_blocks[cell->block_id];
const int col_block_size = col_block.size;
const int cell_size = row_block_size * col_block_size;
if (cell->position + cell_size > block_sparse_value_id) {
const int pos_in_cell = block_sparse_value_id - cell->position;
const int row_in_cell = pos_in_cell / col_block_size;
const int col_in_cell = pos_in_cell % col_block_size;
const int row = row_in_cell + row_block.position;
crs_values[crs_rows[row] + num_cols_before + col_in_cell] =
block_sparse_values[value_id];
break;
}
num_cols_before += col_block_size;
}
}
void PermuteToCRS(const int block_sparse_offset,
const int num_values,
const int num_row_blocks,
const int* first_cell_in_row_block,
const Cell* cells,
const Block* row_blocks,
const Block* col_blocks,
const int* crs_rows,
const double* block_sparse_values,
double* crs_values,
cudaStream_t stream) {
const int num_blocks_valuewise = NumBlocksInGrid(num_values);
PermuteToCrsKernel<false>
<<<num_blocks_valuewise, kCudaBlockSize, 0, stream>>>(
block_sparse_offset,
num_values,
num_row_blocks,
0,
first_cell_in_row_block,
nullptr,
cells,
row_blocks,
col_blocks,
crs_rows,
block_sparse_values,
crs_values);
}
void PermuteToCRSPartitionedF(const int block_sparse_offset,
const int num_values,
const int num_row_blocks,
const int num_row_blocks_e,
const int* first_cell_in_row_block,
const int* value_offset_row_block_f,
const Cell* cells,
const Block* row_blocks,
const Block* col_blocks,
const int* crs_rows,
const double* block_sparse_values,
double* crs_values,
cudaStream_t stream) {
const int num_blocks_valuewise = NumBlocksInGrid(num_values);
PermuteToCrsKernel<true><<<num_blocks_valuewise, kCudaBlockSize, 0, stream>>>(
block_sparse_offset,
num_values,
num_row_blocks,
num_row_blocks_e,
first_cell_in_row_block,
value_offset_row_block_f,
cells,
row_blocks,
col_blocks,
crs_rows,
block_sparse_values,
crs_values);
}
} // namespace internal
} // namespace ceres