blob: 22073b674f1f02c963f67e4b20f70feafb1b9acd [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2021 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// This is the implementation of the public Problem API. The pointer to
// implementation (PIMPL) idiom makes it possible for Ceres internal code to
// refer to the private data members without needing to exposing it to the
// world. An alternative to PIMPL is to have a factory which returns instances
// of a virtual base class; while that approach would work, it requires clients
// to always put a Problem object into a scoped pointer; this needlessly muddies
// client code for little benefit. Therefore, the PIMPL comprise was chosen.
#ifndef CERES_PUBLIC_PROBLEM_IMPL_H_
#define CERES_PUBLIC_PROBLEM_IMPL_H_
#include <array>
#include <map>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "ceres/context_impl.h"
#include "ceres/internal/disable_warnings.h"
#include "ceres/internal/export.h"
#include "ceres/internal/port.h"
#include "ceres/manifold.h"
#include "ceres/problem.h"
#include "ceres/types.h"
namespace ceres {
class CostFunction;
class EvaluationCallback;
class LossFunction;
class LocalParameterization;
struct CRSMatrix;
namespace internal {
class Program;
class ResidualBlock;
class CERES_NO_EXPORT ProblemImpl {
public:
using ParameterMap = std::map<double*, ParameterBlock*>;
using ResidualBlockSet = std::unordered_set<ResidualBlock*>;
using CostFunctionRefCount = std::map<CostFunction*, int>;
using LossFunctionRefCount = std::map<LossFunction*, int>;
ProblemImpl();
explicit ProblemImpl(const Problem::Options& options);
ProblemImpl(const ProblemImpl&) = delete;
void operator=(const ProblemImpl&) = delete;
~ProblemImpl();
// See the public problem.h file for description of these methods.
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* const* const parameter_blocks,
int num_parameter_blocks);
template <typename... Ts>
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0,
Ts*... xs) {
const std::array<double*, sizeof...(Ts) + 1> parameter_blocks{{x0, xs...}};
return AddResidualBlock(cost_function,
loss_function,
parameter_blocks.data(),
static_cast<int>(parameter_blocks.size()));
}
void AddParameterBlock(double* values, int size);
void AddParameterBlock(double* values,
int size,
LocalParameterization* local_parameterization);
void AddParameterBlock(double* values, int size, Manifold* manifold);
void RemoveResidualBlock(ResidualBlock* residual_block);
void RemoveParameterBlock(const double* values);
void SetParameterBlockConstant(const double* values);
void SetParameterBlockVariable(double* values);
bool IsParameterBlockConstant(const double* values) const;
void SetParameterization(double* values,
LocalParameterization* local_parameterization);
const LocalParameterization* GetParameterization(const double* values) const;
bool HasParameterization(const double* values) const;
void SetManifold(double* values, Manifold* manifold);
const Manifold* GetManifold(const double* values) const;
bool HasManifold(const double* values) const;
void SetParameterLowerBound(double* values, int index, double lower_bound);
void SetParameterUpperBound(double* values, int index, double upper_bound);
double GetParameterLowerBound(const double* values, int index) const;
double GetParameterUpperBound(const double* values, int index) const;
bool Evaluate(const Problem::EvaluateOptions& options,
double* cost,
std::vector<double>* residuals,
std::vector<double>* gradient,
CRSMatrix* jacobian);
bool EvaluateResidualBlock(ResidualBlock* residual_block,
bool apply_loss_function,
bool new_point,
double* cost,
double* residuals,
double** jacobians) const;
int NumParameterBlocks() const;
int NumParameters() const;
int NumResidualBlocks() const;
int NumResiduals() const;
int ParameterBlockSize(const double* values) const;
int ParameterBlockTangentSize(const double* values) const;
bool HasParameterBlock(const double* values) const;
void GetParameterBlocks(std::vector<double*>* parameter_blocks) const;
void GetResidualBlocks(std::vector<ResidualBlockId>* residual_blocks) const;
void GetParameterBlocksForResidualBlock(
const ResidualBlockId residual_block,
std::vector<double*>* parameter_blocks) const;
const CostFunction* GetCostFunctionForResidualBlock(
const ResidualBlockId residual_block) const;
const LossFunction* GetLossFunctionForResidualBlock(
const ResidualBlockId residual_block) const;
void GetResidualBlocksForParameterBlock(
const double* values,
std::vector<ResidualBlockId>* residual_blocks) const;
const Program& program() const { return *program_; }
Program* mutable_program() { return program_.get(); }
const ParameterMap& parameter_map() const { return parameter_block_map_; }
const ResidualBlockSet& residual_block_set() const {
CHECK(options_.enable_fast_removal)
<< "Fast removal not enabled, residual_block_set is not maintained.";
return residual_block_set_;
}
ContextImpl* context() { return context_impl_; }
private:
ParameterBlock* InternalAddParameterBlock(double* values, int size);
void InternalSetParameterization(
double* values,
ParameterBlock* parameter_block,
LocalParameterization* local_parameterization);
void InternalSetManifold(double* values,
ParameterBlock* parameter_block,
Manifold* manifold);
void InternalRemoveResidualBlock(ResidualBlock* residual_block);
// Delete the arguments in question. These differ from the Remove* functions
// in that they do not clean up references to the block to delete; they
// merely delete them.
template <typename Block>
void DeleteBlockInVector(std::vector<Block*>* mutable_blocks,
Block* block_to_remove);
void DeleteBlock(ResidualBlock* residual_block);
void DeleteBlock(ParameterBlock* parameter_block);
const Problem::Options options_;
bool context_impl_owned_;
ContextImpl* context_impl_;
// The mapping from user pointers to parameter blocks.
ParameterMap parameter_block_map_;
// Iff enable_fast_removal is enabled, contains the current residual blocks.
ResidualBlockSet residual_block_set_;
// The actual parameter and residual blocks.
std::unique_ptr<internal::Program> program_;
// TODO(sameeragarwal): Unify the shared object handling across object types.
// Right now we are using vectors for LocalParameterization and Manifold
// objects and reference counting for CostFunctions and LossFunctions. Ideally
// this should be done uniformly.
// When removing parameter blocks, parameterizations have ambiguous
// ownership. Instead of scanning the entire problem to see if the
// parameterization is shared with other parameter blocks, buffer
// them until destruction.
std::vector<LocalParameterization*> local_parameterizations_to_delete_;
// When removing parameter blocks, manifolds have ambiguous
// ownership. Instead of scanning the entire problem to see if the
// manifold is shared with other parameter blocks, buffer
// them until destruction.
std::vector<Manifold*> manifolds_to_delete_;
// For each cost function and loss function in the problem, a count
// of the number of residual blocks that refer to them. When the
// count goes to zero and the problem owns these objects, they are
// destroyed.
CostFunctionRefCount cost_function_ref_count_;
LossFunctionRefCount loss_function_ref_count_;
// Because we wrap LocalParameterization objects using a ManifoldAdapter, when
// the user calls GetParameterization we cannot use the same logic as
// GetManifold as the ParameterBlock object only returns a Manifold object. So
// this map stores the association between parameter blocks and local
// parameterizations.
//
// This is a temporary object which will be removed once the
// LocalParameterization to Manifold transition is complete.
std::unordered_map<const double*, LocalParameterization*>
parameter_block_to_local_param_;
};
} // namespace internal
} // namespace ceres
#include "ceres/internal/reenable_warnings.h"
#endif // CERES_PUBLIC_PROBLEM_IMPL_H_