| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // This tests the TrustRegionMinimizer loop using a direct Evaluator |
| // implementation, rather than having a test that goes through all the |
| // Program and Problem machinery. |
| |
| #include "ceres/trust_region_minimizer.h" |
| |
| #include <cmath> |
| #include <memory> |
| |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| #include "ceres/autodiff_cost_function.h" |
| #include "ceres/cost_function.h" |
| #include "ceres/dense_qr_solver.h" |
| #include "ceres/dense_sparse_matrix.h" |
| #include "ceres/evaluator.h" |
| #include "ceres/internal/export.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/minimizer.h" |
| #include "ceres/problem.h" |
| #include "ceres/trust_region_strategy.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| // Templated Evaluator for Powell's function. The template parameters |
| // indicate which of the four variables/columns of the jacobian are |
| // active. This is equivalent to constructing a problem and using the |
| // SubsetManifold. This allows us to test the support for |
| // the Evaluator::Plus operation besides checking for the basic |
| // performance of the trust region algorithm. |
| template <bool col1, bool col2, bool col3, bool col4> |
| class PowellEvaluator2 : public Evaluator { |
| public: |
| // clang-format off |
| PowellEvaluator2() |
| : num_active_cols_( |
| (col1 ? 1 : 0) + |
| (col2 ? 1 : 0) + |
| (col3 ? 1 : 0) + |
| (col4 ? 1 : 0)) { |
| VLOG(1) << "Columns: " |
| << col1 << " " |
| << col2 << " " |
| << col3 << " " |
| << col4; |
| } |
| // clang-format on |
| |
| // Implementation of Evaluator interface. |
| std::unique_ptr<SparseMatrix> CreateJacobian() const final { |
| CHECK(col1 || col2 || col3 || col4); |
| auto dense_jacobian = std::make_unique<DenseSparseMatrix>( |
| NumResiduals(), NumEffectiveParameters()); |
| dense_jacobian->SetZero(); |
| return dense_jacobian; |
| } |
| |
| bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options, |
| const double* state, |
| double* cost, |
| double* residuals, |
| double* gradient, |
| SparseMatrix* jacobian) final { |
| const double x1 = state[0]; |
| const double x2 = state[1]; |
| const double x3 = state[2]; |
| const double x4 = state[3]; |
| |
| VLOG(1) << "State: " |
| << "x1=" << x1 << ", " |
| << "x2=" << x2 << ", " |
| << "x3=" << x3 << ", " |
| << "x4=" << x4 << "."; |
| |
| const double f1 = x1 + 10.0 * x2; |
| const double f2 = sqrt(5.0) * (x3 - x4); |
| const double f3 = pow(x2 - 2.0 * x3, 2.0); |
| const double f4 = sqrt(10.0) * pow(x1 - x4, 2.0); |
| |
| VLOG(1) << "Function: " |
| << "f1=" << f1 << ", " |
| << "f2=" << f2 << ", " |
| << "f3=" << f3 << ", " |
| << "f4=" << f4 << "."; |
| |
| *cost = (f1 * f1 + f2 * f2 + f3 * f3 + f4 * f4) / 2.0; |
| |
| VLOG(1) << "Cost: " << *cost; |
| |
| if (residuals != nullptr) { |
| residuals[0] = f1; |
| residuals[1] = f2; |
| residuals[2] = f3; |
| residuals[3] = f4; |
| } |
| |
| if (jacobian != nullptr) { |
| DenseSparseMatrix* dense_jacobian; |
| dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian); |
| dense_jacobian->SetZero(); |
| |
| Matrix& jacobian_matrix = *(dense_jacobian->mutable_matrix()); |
| CHECK_EQ(jacobian_matrix.cols(), num_active_cols_); |
| |
| int column_index = 0; |
| if (col1) { |
| // clang-format off |
| jacobian_matrix.col(column_index++) << |
| 1.0, |
| 0.0, |
| 0.0, |
| sqrt(10.0) * 2.0 * (x1 - x4); |
| // clang-format on |
| } |
| if (col2) { |
| // clang-format off |
| jacobian_matrix.col(column_index++) << |
| 10.0, |
| 0.0, |
| 2.0*(x2 - 2.0*x3), |
| 0.0; |
| // clang-format on |
| } |
| |
| if (col3) { |
| // clang-format off |
| jacobian_matrix.col(column_index++) << |
| 0.0, |
| sqrt(5.0), |
| 4.0*(2.0*x3 - x2), |
| 0.0; |
| // clang-format on |
| } |
| |
| if (col4) { |
| // clang-format off |
| jacobian_matrix.col(column_index++) << |
| 0.0, |
| -sqrt(5.0), |
| 0.0, |
| sqrt(10.0) * 2.0 * (x4 - x1); |
| // clang-format on |
| } |
| VLOG(1) << "\n" << jacobian_matrix; |
| } |
| |
| if (gradient != nullptr) { |
| int column_index = 0; |
| if (col1) { |
| gradient[column_index++] = f1 + f4 * sqrt(10.0) * 2.0 * (x1 - x4); |
| } |
| |
| if (col2) { |
| gradient[column_index++] = f1 * 10.0 + f3 * 2.0 * (x2 - 2.0 * x3); |
| } |
| |
| if (col3) { |
| gradient[column_index++] = |
| f2 * sqrt(5.0) + f3 * (4.0 * (2.0 * x3 - x2)); |
| } |
| |
| if (col4) { |
| gradient[column_index++] = |
| -f2 * sqrt(5.0) + f4 * sqrt(10.0) * 2.0 * (x4 - x1); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Plus(const double* state, |
| const double* delta, |
| double* state_plus_delta) const final { |
| int delta_index = 0; |
| state_plus_delta[0] = (col1 ? state[0] + delta[delta_index++] : state[0]); |
| state_plus_delta[1] = (col2 ? state[1] + delta[delta_index++] : state[1]); |
| state_plus_delta[2] = (col3 ? state[2] + delta[delta_index++] : state[2]); |
| state_plus_delta[3] = (col4 ? state[3] + delta[delta_index++] : state[3]); |
| return true; |
| } |
| |
| int NumEffectiveParameters() const final { return num_active_cols_; } |
| int NumParameters() const final { return 4; } |
| int NumResiduals() const final { return 4; } |
| |
| private: |
| const int num_active_cols_; |
| }; |
| |
| // Templated function to hold a subset of the columns fixed and check |
| // if the solver converges to the optimal values or not. |
| template <bool col1, bool col2, bool col3, bool col4> |
| void IsTrustRegionSolveSuccessful(TrustRegionStrategyType strategy_type) { |
| Solver::Options solver_options; |
| LinearSolver::Options linear_solver_options; |
| DenseQRSolver linear_solver(linear_solver_options); |
| |
| double parameters[4] = {3, -1, 0, 1.0}; |
| |
| // If the column is inactive, then set its value to the optimal |
| // value. |
| parameters[0] = (col1 ? parameters[0] : 0.0); |
| parameters[1] = (col2 ? parameters[1] : 0.0); |
| parameters[2] = (col3 ? parameters[2] : 0.0); |
| parameters[3] = (col4 ? parameters[3] : 0.0); |
| |
| Minimizer::Options minimizer_options(solver_options); |
| minimizer_options.gradient_tolerance = 1e-26; |
| minimizer_options.function_tolerance = 1e-26; |
| minimizer_options.parameter_tolerance = 1e-26; |
| minimizer_options.evaluator = |
| std::make_unique<PowellEvaluator2<col1, col2, col3, col4>>(); |
| minimizer_options.jacobian = minimizer_options.evaluator->CreateJacobian(); |
| |
| TrustRegionStrategy::Options trust_region_strategy_options; |
| trust_region_strategy_options.trust_region_strategy_type = strategy_type; |
| trust_region_strategy_options.linear_solver = &linear_solver; |
| trust_region_strategy_options.initial_radius = 1e4; |
| trust_region_strategy_options.max_radius = 1e20; |
| trust_region_strategy_options.min_lm_diagonal = 1e-6; |
| trust_region_strategy_options.max_lm_diagonal = 1e32; |
| minimizer_options.trust_region_strategy = |
| TrustRegionStrategy::Create(trust_region_strategy_options); |
| |
| TrustRegionMinimizer minimizer; |
| Solver::Summary summary; |
| minimizer.Minimize(minimizer_options, parameters, &summary); |
| |
| // The minimum is at x1 = x2 = x3 = x4 = 0. |
| EXPECT_NEAR(0.0, parameters[0], 0.001); |
| EXPECT_NEAR(0.0, parameters[1], 0.001); |
| EXPECT_NEAR(0.0, parameters[2], 0.001); |
| EXPECT_NEAR(0.0, parameters[3], 0.001); |
| } |
| |
| TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingLevenbergMarquardt) { |
| // This case is excluded because this has a local minimum and does |
| // not find the optimum. This should not affect the correctness of |
| // this test since we are testing all the other 14 combinations of |
| // column activations. |
| // |
| // IsSolveSuccessful<true, true, false, true>(); |
| |
| const TrustRegionStrategyType kStrategy = LEVENBERG_MARQUARDT; |
| // clang-format off |
| IsTrustRegionSolveSuccessful<true, true, true, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<true, true, true, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<true, false, true, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<false, true, true, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<true, true, false, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<true, false, true, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<false, true, true, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<true, false, false, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<false, true, false, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<false, false, true, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<true, false, false, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<false, true, false, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<false, false, true, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy); |
| // clang-format on |
| } |
| |
| TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingDogleg) { |
| // The following two cases are excluded because they encounter a |
| // local minimum. |
| // |
| // IsTrustRegionSolveSuccessful<true, true, false, true >(kStrategy); |
| // IsTrustRegionSolveSuccessful<true, true, true, true >(kStrategy); |
| |
| const TrustRegionStrategyType kStrategy = DOGLEG; |
| // clang-format off |
| IsTrustRegionSolveSuccessful<true, true, true, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<true, false, true, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<false, true, true, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<true, true, false, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<true, false, true, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<false, true, true, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<true, false, false, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<false, true, false, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<false, false, true, true >(kStrategy); |
| IsTrustRegionSolveSuccessful<true, false, false, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<false, true, false, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<false, false, true, false>(kStrategy); |
| IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy); |
| // clang-format on |
| } |
| |
| class CurveCostFunction : public CostFunction { |
| public: |
| CurveCostFunction(int num_vertices, double target_length) |
| : num_vertices_(num_vertices), target_length_(target_length) { |
| set_num_residuals(1); |
| for (int i = 0; i < num_vertices_; ++i) { |
| mutable_parameter_block_sizes()->push_back(2); |
| } |
| } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const override { |
| residuals[0] = target_length_; |
| |
| for (int i = 0; i < num_vertices_; ++i) { |
| int prev = (num_vertices_ + i - 1) % num_vertices_; |
| double length = 0.0; |
| for (int dim = 0; dim < 2; dim++) { |
| const double diff = parameters[prev][dim] - parameters[i][dim]; |
| length += diff * diff; |
| } |
| residuals[0] -= sqrt(length); |
| } |
| |
| if (jacobians == nullptr) { |
| return true; |
| } |
| |
| for (int i = 0; i < num_vertices_; ++i) { |
| if (jacobians[i] != nullptr) { |
| int prev = (num_vertices_ + i - 1) % num_vertices_; |
| int next = (i + 1) % num_vertices_; |
| |
| double u[2], v[2]; |
| double norm_u = 0., norm_v = 0.; |
| for (int dim = 0; dim < 2; dim++) { |
| u[dim] = parameters[i][dim] - parameters[prev][dim]; |
| norm_u += u[dim] * u[dim]; |
| v[dim] = parameters[next][dim] - parameters[i][dim]; |
| norm_v += v[dim] * v[dim]; |
| } |
| |
| norm_u = sqrt(norm_u); |
| norm_v = sqrt(norm_v); |
| |
| for (int dim = 0; dim < 2; dim++) { |
| jacobians[i][dim] = 0.; |
| |
| if (norm_u > std::numeric_limits<double>::min()) { |
| jacobians[i][dim] -= u[dim] / norm_u; |
| } |
| |
| if (norm_v > std::numeric_limits<double>::min()) { |
| jacobians[i][dim] += v[dim] / norm_v; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| private: |
| int num_vertices_; |
| double target_length_; |
| }; |
| |
| TEST(TrustRegionMinimizer, JacobiScalingTest) { |
| int N = 6; |
| std::vector<double*> y(N); |
| const double pi = 3.1415926535897932384626433; |
| for (int i = 0; i < N; i++) { |
| double theta = i * 2. * pi / static_cast<double>(N); |
| y[i] = new double[2]; |
| y[i][0] = cos(theta); |
| y[i][1] = sin(theta); |
| } |
| |
| Problem problem; |
| problem.AddResidualBlock(new CurveCostFunction(N, 10.), nullptr, y); |
| Solver::Options options; |
| options.linear_solver_type = ceres::DENSE_QR; |
| Solver::Summary summary; |
| Solve(options, &problem, &summary); |
| EXPECT_LE(summary.final_cost, 1e-10); |
| |
| for (int i = 0; i < N; i++) { |
| delete[] y[i]; |
| } |
| } |
| |
| struct ExpCostFunctor { |
| template <typename T> |
| bool operator()(const T* const x, T* residual) const { |
| residual[0] = T(10.0) - exp(x[0]); |
| return true; |
| } |
| |
| static CostFunction* Create() { |
| return new AutoDiffCostFunction<ExpCostFunctor, 1, 1>(new ExpCostFunctor); |
| } |
| }; |
| |
| TEST(TrustRegionMinimizer, GradientToleranceConvergenceUpdatesStep) { |
| double x = 5; |
| Problem problem; |
| problem.AddResidualBlock(ExpCostFunctor::Create(), nullptr, &x); |
| problem.SetParameterLowerBound(&x, 0, 3.0); |
| Solver::Options options; |
| Solver::Summary summary; |
| Solve(options, &problem, &summary); |
| EXPECT_NEAR(3.0, x, 1e-12); |
| const double expected_final_cost = 0.5 * pow(10.0 - exp(3.0), 2); |
| EXPECT_NEAR(expected_final_cost, summary.final_cost, 1e-12); |
| } |
| |
| } // namespace ceres::internal |