| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // tbennun@gmail.com (Tal Ben-Nun) |
| |
| #include "ceres/numeric_diff_test_utils.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| |
| #include "ceres/cost_function.h" |
| #include "ceres/test_util.h" |
| #include "ceres/types.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| bool EasyFunctor::operator()(const double* x1, |
| const double* x2, |
| double* residuals) const { |
| residuals[0] = residuals[1] = residuals[2] = 0; |
| for (int i = 0; i < 5; ++i) { |
| residuals[0] += x1[i] * x2[i]; |
| residuals[2] += x2[i] * x2[i]; |
| } |
| residuals[1] = residuals[0] * residuals[0]; |
| return true; |
| } |
| |
| void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| const CostFunction& cost_function, NumericDiffMethodType method) const { |
| // The x1[0] is made deliberately small to test the performance near zero. |
| // clang-format off |
| double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 }; |
| double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 }; |
| double *parameters[] = { &x1[0], &x2[0] }; |
| // clang-format on |
| |
| double dydx1[15]; // 3 x 5, row major. |
| double dydx2[15]; // 3 x 5, row major. |
| double* jacobians[2] = {&dydx1[0], &dydx2[0]}; |
| |
| double residuals[3] = {-1e-100, -2e-100, -3e-100}; |
| |
| ASSERT_TRUE( |
| cost_function.Evaluate(¶meters[0], &residuals[0], &jacobians[0])); |
| |
| double expected_residuals[3]; |
| EasyFunctor functor; |
| functor(x1, x2, expected_residuals); |
| EXPECT_EQ(expected_residuals[0], residuals[0]); |
| EXPECT_EQ(expected_residuals[1], residuals[1]); |
| EXPECT_EQ(expected_residuals[2], residuals[2]); |
| |
| double tolerance = 0.0; |
| switch (method) { |
| default: |
| case CENTRAL: |
| tolerance = 3e-9; |
| break; |
| |
| case FORWARD: |
| tolerance = 2e-5; |
| break; |
| |
| case RIDDERS: |
| tolerance = 1e-13; |
| break; |
| } |
| |
| for (int i = 0; i < 5; ++i) { |
| // clang-format off |
| ExpectClose(x2[i], dydx1[5 * 0 + i], tolerance); // y1 |
| ExpectClose(x1[i], dydx2[5 * 0 + i], tolerance); |
| ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance); // y2 |
| ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance); |
| ExpectClose(0.0, dydx1[5 * 2 + i], tolerance); // y3 |
| ExpectClose(2 * x2[i], dydx2[5 * 2 + i], tolerance); |
| // clang-format on |
| } |
| } |
| |
| bool TranscendentalFunctor::operator()(const double* x1, |
| const double* x2, |
| double* residuals) const { |
| double x1x2 = 0; |
| for (int i = 0; i < 5; ++i) { |
| x1x2 += x1[i] * x2[i]; |
| } |
| residuals[0] = sin(x1x2); |
| residuals[1] = exp(-x1x2 / 10); |
| return true; |
| } |
| |
| void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| const CostFunction& cost_function, NumericDiffMethodType method) const { |
| struct TestParameterBlocks { |
| double x1[5]; |
| double x2[5]; |
| }; |
| |
| // clang-format off |
| std::vector<TestParameterBlocks> kTests = { |
| { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros. |
| { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| }, |
| { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1. |
| { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| }, |
| { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2. |
| { 0.0, 9.0, 0.0, 5.0, 0.0 }, |
| }, |
| { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1. |
| { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| }, |
| { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2. |
| { 0.0, 0.0, 0.0, 0.0, 0.0 }, |
| }, |
| { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros. |
| { 0.0, 0.0, 0.0, 0.0, 0.0 }, |
| }, |
| }; |
| // clang-format on |
| |
| for (auto& test : kTests) { |
| double* x1 = &(test.x1[0]); |
| double* x2 = &(test.x2[0]); |
| double* parameters[] = {x1, x2}; |
| |
| double dydx1[10]; |
| double dydx2[10]; |
| double* jacobians[2] = {&dydx1[0], &dydx2[0]}; |
| |
| double residuals[2]; |
| |
| ASSERT_TRUE( |
| cost_function.Evaluate(¶meters[0], &residuals[0], &jacobians[0])); |
| double x1x2 = 0; |
| for (int i = 0; i < 5; ++i) { |
| x1x2 += x1[i] * x2[i]; |
| } |
| |
| double tolerance = 0.0; |
| switch (method) { |
| default: |
| case CENTRAL: |
| tolerance = 2e-7; |
| break; |
| |
| case FORWARD: |
| tolerance = 2e-5; |
| break; |
| |
| case RIDDERS: |
| tolerance = 3e-12; |
| break; |
| } |
| |
| for (int i = 0; i < 5; ++i) { |
| // clang-format off |
| ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], tolerance); |
| ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], tolerance); |
| ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance); |
| ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance); |
| // clang-format on |
| } |
| } |
| } |
| |
| bool ExponentialFunctor::operator()(const double* x1, double* residuals) const { |
| residuals[0] = exp(x1[0]); |
| return true; |
| } |
| |
| void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| const CostFunction& cost_function) const { |
| // Evaluating the functor at specific points for testing. |
| std::vector<double> kTests = {1.0, 2.0, 3.0, 4.0, 5.0}; |
| |
| // Minimal tolerance w.r.t. the cost function and the tests. |
| const double kTolerance = 2e-14; |
| |
| for (double& test : kTests) { |
| double* parameters[] = {&test}; |
| double dydx; |
| double* jacobians[1] = {&dydx}; |
| double residual; |
| |
| ASSERT_TRUE( |
| cost_function.Evaluate(¶meters[0], &residual, &jacobians[0])); |
| |
| double expected_result = exp(test); |
| |
| // Expect residual to be close to exp(x). |
| ExpectClose(residual, expected_result, kTolerance); |
| |
| // Check evaluated differences. dydx should also be close to exp(x). |
| ExpectClose(dydx, expected_result, kTolerance); |
| } |
| } |
| |
| bool RandomizedFunctor::operator()(const double* x1, double* residuals) const { |
| double random_value = |
| static_cast<double>(rand()) / static_cast<double>(RAND_MAX); |
| |
| // Normalize noise to [-factor, factor]. |
| random_value *= 2.0; |
| random_value -= 1.0; |
| random_value *= noise_factor_; |
| |
| residuals[0] = x1[0] * x1[0] + random_value; |
| return true; |
| } |
| |
| void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| const CostFunction& cost_function) const { |
| std::vector<double> kTests = {0.0, 1.0, 3.0, 4.0, 50.0}; |
| |
| const double kTolerance = 2e-4; |
| |
| // Initialize random number generator with given seed. |
| srand(random_seed_); |
| |
| for (double& test : kTests) { |
| double* parameters[] = {&test}; |
| double dydx; |
| double* jacobians[1] = {&dydx}; |
| double residual; |
| |
| ASSERT_TRUE( |
| cost_function.Evaluate(¶meters[0], &residual, &jacobians[0])); |
| |
| // Expect residual to be close to x^2 w.r.t. noise factor. |
| ExpectClose(residual, test * test, noise_factor_); |
| |
| // Check evaluated differences. (dy/dx = ~2x) |
| ExpectClose(dydx, 2 * test, kTolerance); |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |