| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2021 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Bicubic interpolation with automatic differentiation | 
 | // | 
 | // We will use estimation of 2d shift as a sample problem for bicubic | 
 | // interpolation. | 
 | // | 
 | // Let us define f(x, y) = x * x - y * x + y * y | 
 | // And optimize cost function sum_i [f(x_i + s_x, y_i + s_y) - v_i]^2 | 
 | // | 
 | // Bicubic interpolation of f(x, y) will be exact, thus we can expect close to | 
 | // perfect convergence | 
 |  | 
 | #include <utility> | 
 |  | 
 | #include "ceres/ceres.h" | 
 | #include "ceres/cubic_interpolation.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | using Grid = ceres::Grid2D<double>; | 
 | using Interpolator = ceres::BiCubicInterpolator<Grid>; | 
 |  | 
 | // Cost-function using autodiff interface of BiCubicInterpolator | 
 | struct AutoDiffBiCubicCost { | 
 |   EIGEN_MAKE_ALIGNED_OPERATOR_NEW; | 
 |  | 
 |   template <typename T> | 
 |   bool operator()(const T* s, T* residual) const { | 
 |     using Vector2T = Eigen::Matrix<T, 2, 1>; | 
 |     Eigen::Map<const Vector2T> shift(s); | 
 |  | 
 |     const Vector2T point = point_ + shift; | 
 |  | 
 |     T v; | 
 |     interpolator_.Evaluate(point.y(), point.x(), &v); | 
 |  | 
 |     *residual = v - value_; | 
 |     return true; | 
 |   } | 
 |  | 
 |   AutoDiffBiCubicCost(const Interpolator& interpolator, | 
 |                       Eigen::Vector2d point, | 
 |                       double value) | 
 |       : point_(std::move(point)), value_(value), interpolator_(interpolator) {} | 
 |  | 
 |   static ceres::CostFunction* Create(const Interpolator& interpolator, | 
 |                                      const Eigen::Vector2d& point, | 
 |                                      double value) { | 
 |     return new ceres::AutoDiffCostFunction<AutoDiffBiCubicCost, 1, 2>( | 
 |         new AutoDiffBiCubicCost(interpolator, point, value)); | 
 |   } | 
 |  | 
 |   const Eigen::Vector2d point_; | 
 |   const double value_; | 
 |   const Interpolator& interpolator_; | 
 | }; | 
 |  | 
 | // Function for input data generation | 
 | static double f(const double& x, const double& y) { | 
 |   return x * x - y * x + y * y; | 
 | } | 
 |  | 
 | int main(int argc, char** argv) { | 
 |   google::InitGoogleLogging(argv[0]); | 
 |   // Problem sizes | 
 |   const int kGridRowsHalf = 9; | 
 |   const int kGridColsHalf = 11; | 
 |   const int kGridRows = 2 * kGridRowsHalf + 1; | 
 |   const int kGridCols = 2 * kGridColsHalf + 1; | 
 |   const int kPoints = 4; | 
 |  | 
 |   const Eigen::Vector2d shift(1.234, 2.345); | 
 |   const std::array<Eigen::Vector2d, kPoints> points = { | 
 |       Eigen::Vector2d{-2., -3.}, | 
 |       Eigen::Vector2d{-2., 3.}, | 
 |       Eigen::Vector2d{2., 3.}, | 
 |       Eigen::Vector2d{2., -3.}}; | 
 |  | 
 |   // Data is a row-major array of kGridRows x kGridCols values of function | 
 |   // f(x, y) on the grid, with x in {-kGridColsHalf, ..., +kGridColsHalf}, | 
 |   // and y in {-kGridRowsHalf, ..., +kGridRowsHalf} | 
 |   double data[kGridRows * kGridCols]; | 
 |   for (int i = 0; i < kGridRows; ++i) { | 
 |     for (int j = 0; j < kGridCols; ++j) { | 
 |       // Using row-major order | 
 |       int index = i * kGridCols + j; | 
 |       double y = i - kGridRowsHalf; | 
 |       double x = j - kGridColsHalf; | 
 |  | 
 |       data[index] = f(x, y); | 
 |     } | 
 |   } | 
 |   const Grid grid(data, | 
 |                   -kGridRowsHalf, | 
 |                   kGridRowsHalf + 1, | 
 |                   -kGridColsHalf, | 
 |                   kGridColsHalf + 1); | 
 |   const Interpolator interpolator(grid); | 
 |  | 
 |   Eigen::Vector2d shift_estimate(3.1415, 1.337); | 
 |  | 
 |   ceres::Problem problem; | 
 |   problem.AddParameterBlock(shift_estimate.data(), 2); | 
 |  | 
 |   for (const auto& p : points) { | 
 |     const Eigen::Vector2d shifted = p + shift; | 
 |  | 
 |     const double v = f(shifted.x(), shifted.y()); | 
 |     problem.AddResidualBlock(AutoDiffBiCubicCost::Create(interpolator, p, v), | 
 |                              nullptr, | 
 |                              shift_estimate.data()); | 
 |   } | 
 |  | 
 |   ceres::Solver::Options options; | 
 |   options.minimizer_progress_to_stdout = true; | 
 |  | 
 |   ceres::Solver::Summary summary; | 
 |   ceres::Solve(options, &problem, &summary); | 
 |   std::cout << summary.BriefReport() << '\n'; | 
 |  | 
 |   std::cout << "Bicubic interpolation with automatic derivatives:\n"; | 
 |   std::cout << "Estimated shift: " << shift_estimate.transpose() | 
 |             << ", ground-truth: " << shift.transpose() | 
 |             << " (error: " << (shift_estimate - shift).transpose() << ")" | 
 |             << std::endl; | 
 |  | 
 |   CHECK_LT((shift_estimate - shift).norm(), 1e-9); | 
 |   return 0; | 
 | } |