|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: strandmark@google.com (Petter Strandmark) | 
|  | // | 
|  | // Denoising using Fields of Experts and the Ceres minimizer. | 
|  | // | 
|  | // Note that for good denoising results the weighting between the data term | 
|  | // and the Fields of Experts term needs to be adjusted. This is discussed | 
|  | // in [1]. This program assumes Gaussian noise. The noise model can be changed | 
|  | // by substituing another function for QuadraticCostFunction. | 
|  | // | 
|  | // [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of | 
|  | //     Computer Vision, 82(2):205--229, 2009. | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <iostream> | 
|  | #include <random> | 
|  | #include <sstream> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/ceres.h" | 
|  | #include "fields_of_experts.h" | 
|  | #include "gflags/gflags.h" | 
|  | #include "glog/logging.h" | 
|  | #include "pgm_image.h" | 
|  |  | 
|  | DEFINE_string(input, "", "File to which the output image should be written"); | 
|  | DEFINE_string(foe_file, "", "FoE file to use"); | 
|  | DEFINE_string(output, "", "File to which the output image should be written"); | 
|  | DEFINE_double(sigma, 20.0, "Standard deviation of noise"); | 
|  | DEFINE_string(trust_region_strategy, | 
|  | "levenberg_marquardt", | 
|  | "Options are: levenberg_marquardt, dogleg."); | 
|  | DEFINE_string(dogleg, | 
|  | "traditional_dogleg", | 
|  | "Options are: traditional_dogleg," | 
|  | "subspace_dogleg."); | 
|  | DEFINE_string(linear_solver, | 
|  | "sparse_normal_cholesky", | 
|  | "Options are: " | 
|  | "sparse_normal_cholesky and cgnr."); | 
|  | DEFINE_string(preconditioner, | 
|  | "jacobi", | 
|  | "Options are: " | 
|  | "identity, jacobi, subset"); | 
|  | DEFINE_string(sparse_linear_algebra_library, | 
|  | "suite_sparse", | 
|  | "Options are: suite_sparse, cx_sparse and eigen_sparse"); | 
|  | DEFINE_double(eta, | 
|  | 1e-2, | 
|  | "Default value for eta. Eta determines the " | 
|  | "accuracy of each linear solve of the truncated newton step. " | 
|  | "Changing this parameter can affect solve performance."); | 
|  | DEFINE_int32(num_threads, 1, "Number of threads."); | 
|  | DEFINE_int32(num_iterations, 10, "Number of iterations."); | 
|  | DEFINE_bool(nonmonotonic_steps, | 
|  | false, | 
|  | "Trust region algorithm can use" | 
|  | " nonmonotic steps."); | 
|  | DEFINE_bool(inner_iterations, | 
|  | false, | 
|  | "Use inner iterations to non-linearly " | 
|  | "refine each successful trust region step."); | 
|  | DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves."); | 
|  | DEFINE_int32(max_num_refinement_iterations, | 
|  | 0, | 
|  | "Iterative refinement iterations"); | 
|  | DEFINE_bool(line_search, | 
|  | false, | 
|  | "Use a line search instead of trust region " | 
|  | "algorithm."); | 
|  | DEFINE_double(subset_fraction, | 
|  | 0.2, | 
|  | "The fraction of residual blocks to use for the" | 
|  | " subset preconditioner."); | 
|  |  | 
|  | namespace ceres { | 
|  | namespace examples { | 
|  | namespace { | 
|  |  | 
|  | // This cost function is used to build the data term. | 
|  | // | 
|  | //   f_i(x) = a * (x_i - b)^2 | 
|  | // | 
|  | class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> { | 
|  | public: | 
|  | QuadraticCostFunction(double a, double b) : sqrta_(std::sqrt(a)), b_(b) {} | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const override { | 
|  | const double x = parameters[0][0]; | 
|  | residuals[0] = sqrta_ * (x - b_); | 
|  | if (jacobians != nullptr && jacobians[0] != nullptr) { | 
|  | jacobians[0][0] = sqrta_; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | double sqrta_, b_; | 
|  | }; | 
|  |  | 
|  | // Creates a Fields of Experts MAP inference problem. | 
|  | void CreateProblem(const FieldsOfExperts& foe, | 
|  | const PGMImage<double>& image, | 
|  | Problem* problem, | 
|  | PGMImage<double>* solution) { | 
|  | // Create the data term | 
|  | CHECK_GT(CERES_GET_FLAG(FLAGS_sigma), 0.0); | 
|  | const double coefficient = | 
|  | 1 / (2.0 * CERES_GET_FLAG(FLAGS_sigma) * CERES_GET_FLAG(FLAGS_sigma)); | 
|  | for (int index = 0; index < image.NumPixels(); ++index) { | 
|  | ceres::CostFunction* cost_function = new QuadraticCostFunction( | 
|  | coefficient, image.PixelFromLinearIndex(index)); | 
|  | problem->AddResidualBlock( | 
|  | cost_function, nullptr, solution->MutablePixelFromLinearIndex(index)); | 
|  | } | 
|  |  | 
|  | // Create Ceres cost and loss functions for regularization. One is needed for | 
|  | // each filter. | 
|  | std::vector<ceres::LossFunction*> loss_function(foe.NumFilters()); | 
|  | std::vector<ceres::CostFunction*> cost_function(foe.NumFilters()); | 
|  | for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) { | 
|  | loss_function[alpha_index] = foe.NewLossFunction(alpha_index); | 
|  | cost_function[alpha_index] = foe.NewCostFunction(alpha_index); | 
|  | } | 
|  |  | 
|  | // Add FoE regularization for each patch in the image. | 
|  | for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) { | 
|  | for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) { | 
|  | // Build a vector with the pixel indices of this patch. | 
|  | std::vector<double*> pixels; | 
|  | const std::vector<int>& x_delta_indices = foe.GetXDeltaIndices(); | 
|  | const std::vector<int>& y_delta_indices = foe.GetYDeltaIndices(); | 
|  | for (int i = 0; i < foe.NumVariables(); ++i) { | 
|  | double* pixel = solution->MutablePixel(x + x_delta_indices[i], | 
|  | y + y_delta_indices[i]); | 
|  | pixels.push_back(pixel); | 
|  | } | 
|  | // For this patch with coordinates (x, y), we will add foe.NumFilters() | 
|  | // terms to the objective function. | 
|  | for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) { | 
|  | problem->AddResidualBlock( | 
|  | cost_function[alpha_index], loss_function[alpha_index], pixels); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SetLinearSolver(Solver::Options* options) { | 
|  | CHECK(StringToLinearSolverType(CERES_GET_FLAG(FLAGS_linear_solver), | 
|  | &options->linear_solver_type)); | 
|  | CHECK(StringToPreconditionerType(CERES_GET_FLAG(FLAGS_preconditioner), | 
|  | &options->preconditioner_type)); | 
|  | CHECK(StringToSparseLinearAlgebraLibraryType( | 
|  | CERES_GET_FLAG(FLAGS_sparse_linear_algebra_library), | 
|  | &options->sparse_linear_algebra_library_type)); | 
|  | options->use_mixed_precision_solves = | 
|  | CERES_GET_FLAG(FLAGS_mixed_precision_solves); | 
|  | options->max_num_refinement_iterations = | 
|  | CERES_GET_FLAG(FLAGS_max_num_refinement_iterations); | 
|  | } | 
|  |  | 
|  | void SetMinimizerOptions(Solver::Options* options) { | 
|  | options->max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations); | 
|  | options->minimizer_progress_to_stdout = true; | 
|  | options->num_threads = CERES_GET_FLAG(FLAGS_num_threads); | 
|  | options->eta = CERES_GET_FLAG(FLAGS_eta); | 
|  | options->use_nonmonotonic_steps = CERES_GET_FLAG(FLAGS_nonmonotonic_steps); | 
|  | if (CERES_GET_FLAG(FLAGS_line_search)) { | 
|  | options->minimizer_type = ceres::LINE_SEARCH; | 
|  | } | 
|  |  | 
|  | CHECK(StringToTrustRegionStrategyType( | 
|  | CERES_GET_FLAG(FLAGS_trust_region_strategy), | 
|  | &options->trust_region_strategy_type)); | 
|  | CHECK( | 
|  | StringToDoglegType(CERES_GET_FLAG(FLAGS_dogleg), &options->dogleg_type)); | 
|  | options->use_inner_iterations = CERES_GET_FLAG(FLAGS_inner_iterations); | 
|  | } | 
|  |  | 
|  | // Solves the FoE problem using Ceres and post-processes it to make sure the | 
|  | // solution stays within [0, 255]. | 
|  | void SolveProblem(Problem* problem, PGMImage<double>* solution) { | 
|  | // These parameters may be experimented with. For example, ceres::DOGLEG tends | 
|  | // to be faster for 2x2 filters, but gives solutions with slightly higher | 
|  | // objective function value. | 
|  | ceres::Solver::Options options; | 
|  | SetMinimizerOptions(&options); | 
|  | SetLinearSolver(&options); | 
|  | options.function_tolerance = 1e-3;  // Enough for denoising. | 
|  |  | 
|  | if (options.linear_solver_type == ceres::CGNR && | 
|  | options.preconditioner_type == ceres::SUBSET) { | 
|  | std::vector<ResidualBlockId> residual_blocks; | 
|  | problem->GetResidualBlocks(&residual_blocks); | 
|  |  | 
|  | // To use the SUBSET preconditioner we need to provide a list of | 
|  | // residual blocks (rows of the Jacobian). The denoising problem | 
|  | // has fairly general sparsity, and there is no apriori reason to | 
|  | // select one residual block over another, so we will randomly | 
|  | // subsample the residual blocks with probability subset_fraction. | 
|  | std::default_random_engine engine; | 
|  | std::uniform_real_distribution<> distribution(0, 1);  // rage 0 - 1 | 
|  | for (auto residual_block : residual_blocks) { | 
|  | if (distribution(engine) <= CERES_GET_FLAG(FLAGS_subset_fraction)) { | 
|  | options.residual_blocks_for_subset_preconditioner.insert( | 
|  | residual_block); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ceres::Solver::Summary summary; | 
|  | ceres::Solve(options, problem, &summary); | 
|  | std::cout << summary.FullReport() << "\n"; | 
|  |  | 
|  | // Make the solution stay in [0, 255]. | 
|  | for (int x = 0; x < solution->width(); ++x) { | 
|  | for (int y = 0; y < solution->height(); ++y) { | 
|  | *solution->MutablePixel(x, y) = | 
|  | std::min(255.0, std::max(0.0, solution->Pixel(x, y))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  | }  // namespace examples | 
|  | }  // namespace ceres | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | using namespace ceres::examples; | 
|  | GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); | 
|  | google::InitGoogleLogging(argv[0]); | 
|  |  | 
|  | if (CERES_GET_FLAG(FLAGS_input).empty()) { | 
|  | std::cerr << "Please provide an image file name using -input.\n"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (CERES_GET_FLAG(FLAGS_foe_file).empty()) { | 
|  | std::cerr << "Please provide a Fields of Experts file name using -foe_file." | 
|  | "\n"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Load the Fields of Experts filters from file. | 
|  | FieldsOfExperts foe; | 
|  | if (!foe.LoadFromFile(CERES_GET_FLAG(FLAGS_foe_file))) { | 
|  | std::cerr << "Loading \"" << CERES_GET_FLAG(FLAGS_foe_file) | 
|  | << "\" failed.\n"; | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | // Read the images | 
|  | PGMImage<double> image(CERES_GET_FLAG(FLAGS_input)); | 
|  | if (image.width() == 0) { | 
|  | std::cerr << "Reading \"" << CERES_GET_FLAG(FLAGS_input) << "\" failed.\n"; | 
|  | return 3; | 
|  | } | 
|  | PGMImage<double> solution(image.width(), image.height()); | 
|  | solution.Set(0.0); | 
|  |  | 
|  | ceres::Problem problem; | 
|  | CreateProblem(foe, image, &problem, &solution); | 
|  |  | 
|  | SolveProblem(&problem, &solution); | 
|  |  | 
|  | if (!CERES_GET_FLAG(FLAGS_output).empty()) { | 
|  | CHECK(solution.WriteToFile(CERES_GET_FLAG(FLAGS_output))) | 
|  | << "Writing \"" << CERES_GET_FLAG(FLAGS_output) << "\" failed."; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |