|  | // Copyright (c) 2013 libmv authors. | 
|  | // | 
|  | // Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | // of this software and associated documentation files (the "Software"), to | 
|  | // deal in the Software without restriction, including without limitation the | 
|  | // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | 
|  | // sell copies of the Software, and to permit persons to whom the Software is | 
|  | // furnished to do so, subject to the following conditions: | 
|  | // | 
|  | // The above copyright notice and this permission notice shall be included in | 
|  | // all copies or substantial portions of the Software. | 
|  | // | 
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|  | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
|  | // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
|  | // IN THE SOFTWARE. | 
|  | // | 
|  | // Author: mierle@gmail.com (Keir Mierle) | 
|  | //         sergey.vfx@gmail.com (Sergey Sharybin) | 
|  | // | 
|  | // This is an example application which contains bundle adjustment code used | 
|  | // in the Libmv library and Blender. It reads problems from files passed via | 
|  | // the command line and runs the bundle adjuster on the problem. | 
|  | // | 
|  | // File with problem a binary file, for which it is crucial to know in which | 
|  | // order bytes of float values are stored in. This information is provided | 
|  | // by a single character in the beginning of the file. There're two possible | 
|  | // values of this byte: | 
|  | //  - V, which means values in the file are stored with big endian type | 
|  | //  - v, which means values in the file are stored with little endian type | 
|  | // | 
|  | // The rest of the file contains data in the following order: | 
|  | //   - Space in which markers' coordinates are stored in | 
|  | //   - Camera intrinsics | 
|  | //   - Number of cameras | 
|  | //   - Cameras | 
|  | //   - Number of 3D points | 
|  | //   - 3D points | 
|  | //   - Number of markers | 
|  | //   - Markers | 
|  | // | 
|  | // Markers' space could either be normalized or image (pixels). This is defined | 
|  | // by the single character in the file. P means markers in the file is in image | 
|  | // space, and N means markers are in normalized space. | 
|  | // | 
|  | // Camera intrinsics are 8 described by 8 float 8. | 
|  | // This values goes in the following order: | 
|  | // | 
|  | //   - Focal length, principal point X, principal point Y, k1, k2, k3, p1, p2 | 
|  | // | 
|  | // Every camera is described by: | 
|  | // | 
|  | //   - Image for which camera belongs to (single 4 bytes integer value). | 
|  | //   - Column-major camera rotation matrix, 9 float values. | 
|  | //   - Camera translation, 3-component vector of float values. | 
|  | // | 
|  | // Image number shall be greater or equal to zero. Order of cameras does not | 
|  | // matter and gaps are possible. | 
|  | // | 
|  | // Every 3D point is decribed by: | 
|  | // | 
|  | //  - Track number point belongs to (single 4 bytes integer value). | 
|  | //  - 3D position vector, 3-component vector of float values. | 
|  | // | 
|  | // Track number shall be greater or equal to zero. Order of tracks does not | 
|  | // matter and gaps are possible. | 
|  | // | 
|  | // Finally every marker is described by: | 
|  | // | 
|  | //  - Image marker belongs to single 4 bytes integer value). | 
|  | //  - Track marker belongs to single 4 bytes integer value). | 
|  | //  - 2D marker position vector, (two float values). | 
|  | // | 
|  | // Marker's space is used a default value for refine_intrinsics command line | 
|  | // flag. This means if there's no refine_intrinsics flag passed via command | 
|  | // line, camera intrinsics will be refined if markers in the problem are | 
|  | // stored in image space and camera intrinsics will not be refined if markers | 
|  | // are in normalized space. | 
|  | // | 
|  | // Passing refine_intrinsics command line flag defines explicitly whether | 
|  | // refinement of intrinsics will happen. Currently, only none and all | 
|  | // intrinsics refinement is supported. | 
|  | // | 
|  | // There're existing problem files dumped from blender stored in folder | 
|  | // ../data/libmv-ba-problems. | 
|  |  | 
|  | #include <fcntl.h> | 
|  |  | 
|  | #include <cstdio> | 
|  | #include <sstream> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #ifdef _MSC_VER | 
|  | #include <io.h> | 
|  | #define open _open | 
|  | #define close _close | 
|  | typedef unsigned __int32 uint32_t; | 
|  | #else | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <cstdint> | 
|  |  | 
|  | // O_BINARY is not defined on unix like platforms, as there is no | 
|  | // difference between binary and text files. | 
|  | #define O_BINARY 0 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #include "ceres/ceres.h" | 
|  | #include "ceres/rotation.h" | 
|  | #include "gflags/gflags.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | using Mat3 = Eigen::Matrix<double, 3, 3>; | 
|  | using Vec6 = Eigen::Matrix<double, 6, 1>; | 
|  | using Vec3 = Eigen::Vector3d; | 
|  | using Vec4 = Eigen::Vector4d; | 
|  |  | 
|  | using std::vector; | 
|  |  | 
|  | DEFINE_string(input, "", "Input File name"); | 
|  | DEFINE_string(refine_intrinsics, | 
|  | "", | 
|  | "Camera intrinsics to be refined. Options are: none, radial."); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // A EuclideanCamera is the location and rotation of the camera | 
|  | // viewing an image. | 
|  | // | 
|  | // image identifies which image this camera represents. | 
|  | // R is a 3x3 matrix representing the rotation of the camera. | 
|  | // t is a translation vector representing its positions. | 
|  | struct EuclideanCamera { | 
|  | EuclideanCamera() = default; | 
|  | EuclideanCamera(const EuclideanCamera& c) = default; | 
|  |  | 
|  | int image{-1}; | 
|  | Mat3 R; | 
|  | Vec3 t; | 
|  | }; | 
|  |  | 
|  | // A Point is the 3D location of a track. | 
|  | // | 
|  | // track identifies which track this point corresponds to. | 
|  | // X represents the 3D position of the track. | 
|  | struct EuclideanPoint { | 
|  | EuclideanPoint() = default; | 
|  | EuclideanPoint(const EuclideanPoint& p) = default; | 
|  | int track{-1}; | 
|  | Vec3 X; | 
|  | }; | 
|  |  | 
|  | // A Marker is the 2D location of a tracked point in an image. | 
|  | // | 
|  | // x and y is the position of the marker in pixels from the top left corner | 
|  | // in the image identified by an image. All markers for to the same target | 
|  | // form a track identified by a common track number. | 
|  | struct Marker { | 
|  | int image; | 
|  | int track; | 
|  | double x, y; | 
|  | }; | 
|  |  | 
|  | // Cameras intrinsics to be bundled. | 
|  | // | 
|  | // BUNDLE_RADIAL actually implies bundling of k1 and k2 coefficients only, | 
|  | // no bundling of k3 is possible at this moment. | 
|  | enum BundleIntrinsics { | 
|  | BUNDLE_NO_INTRINSICS = 0, | 
|  | BUNDLE_FOCAL_LENGTH = 1, | 
|  | BUNDLE_PRINCIPAL_POINT = 2, | 
|  | BUNDLE_RADIAL_K1 = 4, | 
|  | BUNDLE_RADIAL_K2 = 8, | 
|  | BUNDLE_RADIAL = 12, | 
|  | BUNDLE_TANGENTIAL_P1 = 16, | 
|  | BUNDLE_TANGENTIAL_P2 = 32, | 
|  | BUNDLE_TANGENTIAL = 48, | 
|  | }; | 
|  |  | 
|  | // Denotes which blocks to keep constant during bundling. | 
|  | // For example it is useful to keep camera translations constant | 
|  | // when bundling tripod motions. | 
|  | enum BundleConstraints { | 
|  | BUNDLE_NO_CONSTRAINTS = 0, | 
|  | BUNDLE_NO_TRANSLATION = 1, | 
|  | }; | 
|  |  | 
|  | // The intrinsics need to get combined into a single parameter block; use these | 
|  | // enums to index instead of numeric constants. | 
|  | enum { | 
|  | OFFSET_FOCAL_LENGTH, | 
|  | OFFSET_PRINCIPAL_POINT_X, | 
|  | OFFSET_PRINCIPAL_POINT_Y, | 
|  | OFFSET_K1, | 
|  | OFFSET_K2, | 
|  | OFFSET_K3, | 
|  | OFFSET_P1, | 
|  | OFFSET_P2, | 
|  | }; | 
|  |  | 
|  | // Returns a pointer to the camera corresponding to a image. | 
|  | EuclideanCamera* CameraForImage(vector<EuclideanCamera>* all_cameras, | 
|  | const int image) { | 
|  | if (image < 0 || image >= all_cameras->size()) { | 
|  | return nullptr; | 
|  | } | 
|  | EuclideanCamera* camera = &(*all_cameras)[image]; | 
|  | if (camera->image == -1) { | 
|  | return nullptr; | 
|  | } | 
|  | return camera; | 
|  | } | 
|  |  | 
|  | const EuclideanCamera* CameraForImage( | 
|  | const vector<EuclideanCamera>& all_cameras, const int image) { | 
|  | if (image < 0 || image >= all_cameras.size()) { | 
|  | return nullptr; | 
|  | } | 
|  | const EuclideanCamera* camera = &all_cameras[image]; | 
|  | if (camera->image == -1) { | 
|  | return nullptr; | 
|  | } | 
|  | return camera; | 
|  | } | 
|  |  | 
|  | // Returns maximal image number at which marker exists. | 
|  | int MaxImage(const vector<Marker>& all_markers) { | 
|  | if (all_markers.size() == 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int max_image = all_markers[0].image; | 
|  | for (int i = 1; i < all_markers.size(); i++) { | 
|  | max_image = std::max(max_image, all_markers[i].image); | 
|  | } | 
|  | return max_image; | 
|  | } | 
|  |  | 
|  | // Returns a pointer to the point corresponding to a track. | 
|  | EuclideanPoint* PointForTrack(vector<EuclideanPoint>* all_points, | 
|  | const int track) { | 
|  | if (track < 0 || track >= all_points->size()) { | 
|  | return nullptr; | 
|  | } | 
|  | EuclideanPoint* point = &(*all_points)[track]; | 
|  | if (point->track == -1) { | 
|  | return nullptr; | 
|  | } | 
|  | return point; | 
|  | } | 
|  |  | 
|  | // Reader of binary file which makes sure possibly needed endian | 
|  | // conversion happens when loading values like floats and integers. | 
|  | // | 
|  | // File's endian type is reading from a first character of file, which | 
|  | // could either be V for big endian or v for little endian.  This | 
|  | // means you need to design file format assuming first character | 
|  | // denotes file endianness in this way. | 
|  | class EndianAwareFileReader { | 
|  | public: | 
|  | EndianAwareFileReader() { | 
|  | // Get an endian type of the host machine. | 
|  | union { | 
|  | unsigned char bytes[4]; | 
|  | uint32_t value; | 
|  | } endian_test = {{0, 1, 2, 3}}; | 
|  | host_endian_type_ = endian_test.value; | 
|  | file_endian_type_ = host_endian_type_; | 
|  | } | 
|  |  | 
|  | ~EndianAwareFileReader() { | 
|  | if (file_descriptor_ > 0) { | 
|  | close(file_descriptor_); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool OpenFile(const std::string& file_name) { | 
|  | file_descriptor_ = open(file_name.c_str(), O_RDONLY | O_BINARY); | 
|  | if (file_descriptor_ < 0) { | 
|  | return false; | 
|  | } | 
|  | // Get an endian tpye of data in the file. | 
|  | auto file_endian_type_flag = Read<unsigned char>(); | 
|  | if (file_endian_type_flag == 'V') { | 
|  | file_endian_type_ = kBigEndian; | 
|  | } else if (file_endian_type_flag == 'v') { | 
|  | file_endian_type_ = kLittleEndian; | 
|  | } else { | 
|  | LOG(FATAL) << "Problem file is stored in unknown endian type."; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Read value from the file, will switch endian if needed. | 
|  | template <typename T> | 
|  | T Read() const { | 
|  | T value; | 
|  | CHECK_GT(read(file_descriptor_, &value, sizeof(value)), 0); | 
|  | // Switch endian type if file contains data in different type | 
|  | // that current machine. | 
|  | if (file_endian_type_ != host_endian_type_) { | 
|  | value = SwitchEndian<T>(value); | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  | private: | 
|  | static constexpr long int kLittleEndian = 0x03020100ul; | 
|  | static constexpr long int kBigEndian = 0x00010203ul; | 
|  |  | 
|  | // Switch endian type between big to little. | 
|  | template <typename T> | 
|  | T SwitchEndian(const T value) const { | 
|  | if (sizeof(T) == 4) { | 
|  | auto temp_value = static_cast<unsigned int>(value); | 
|  | // clang-format off | 
|  | return ((temp_value >> 24)) | | 
|  | ((temp_value << 8) & 0x00ff0000) | | 
|  | ((temp_value >> 8) & 0x0000ff00) | | 
|  | ((temp_value << 24)); | 
|  | // clang-format on | 
|  | } else if (sizeof(T) == 1) { | 
|  | return value; | 
|  | } else { | 
|  | LOG(FATAL) << "Entered non-implemented part of endian " | 
|  | "switching function."; | 
|  | } | 
|  | } | 
|  |  | 
|  | int host_endian_type_; | 
|  | int file_endian_type_; | 
|  | int file_descriptor_{-1}; | 
|  | }; | 
|  |  | 
|  | // Read 3x3 column-major matrix from the file | 
|  | void ReadMatrix3x3(const EndianAwareFileReader& file_reader, Mat3* matrix) { | 
|  | for (int i = 0; i < 9; i++) { | 
|  | (*matrix)(i % 3, i / 3) = file_reader.Read<float>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Read 3-vector from file | 
|  | void ReadVector3(const EndianAwareFileReader& file_reader, Vec3* vector) { | 
|  | for (int i = 0; i < 3; i++) { | 
|  | (*vector)(i) = file_reader.Read<float>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reads a bundle adjustment problem from the file. | 
|  | // | 
|  | // file_name denotes from which file to read the problem. | 
|  | // camera_intrinsics will contain initial camera intrinsics values. | 
|  | // | 
|  | // all_cameras is a vector of all reconstructed cameras to be optimized, | 
|  | // vector element with number i will contain camera for image i. | 
|  | // | 
|  | // all_points is a vector of all reconstructed 3D points to be optimized, | 
|  | // vector element with number i will contain point for track i. | 
|  | // | 
|  | // all_markers is a vector of all tracked markers existing in | 
|  | // the problem. Only used for reprojection error calculation, stay | 
|  | // unchanged during optimization. | 
|  | // | 
|  | // Returns false if any kind of error happened during | 
|  | // reading. | 
|  | bool ReadProblemFromFile(const std::string& file_name, | 
|  | double camera_intrinsics[8], | 
|  | vector<EuclideanCamera>* all_cameras, | 
|  | vector<EuclideanPoint>* all_points, | 
|  | bool* is_image_space, | 
|  | vector<Marker>* all_markers) { | 
|  | EndianAwareFileReader file_reader; | 
|  | if (!file_reader.OpenFile(file_name)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Read markers' space flag. | 
|  | auto is_image_space_flag = file_reader.Read<unsigned char>(); | 
|  | if (is_image_space_flag == 'P') { | 
|  | *is_image_space = true; | 
|  | } else if (is_image_space_flag == 'N') { | 
|  | *is_image_space = false; | 
|  | } else { | 
|  | LOG(FATAL) << "Problem file contains markers stored in unknown space."; | 
|  | } | 
|  |  | 
|  | // Read camera intrinsics. | 
|  | for (int i = 0; i < 8; i++) { | 
|  | camera_intrinsics[i] = file_reader.Read<float>(); | 
|  | } | 
|  |  | 
|  | // Read all cameras. | 
|  | int number_of_cameras = file_reader.Read<int>(); | 
|  | for (int i = 0; i < number_of_cameras; i++) { | 
|  | EuclideanCamera camera; | 
|  |  | 
|  | camera.image = file_reader.Read<int>(); | 
|  | ReadMatrix3x3(file_reader, &camera.R); | 
|  | ReadVector3(file_reader, &camera.t); | 
|  |  | 
|  | if (camera.image >= all_cameras->size()) { | 
|  | all_cameras->resize(camera.image + 1); | 
|  | } | 
|  |  | 
|  | (*all_cameras)[camera.image].image = camera.image; | 
|  | (*all_cameras)[camera.image].R = camera.R; | 
|  | (*all_cameras)[camera.image].t = camera.t; | 
|  | } | 
|  |  | 
|  | LOG(INFO) << "Read " << number_of_cameras << " cameras."; | 
|  |  | 
|  | // Read all reconstructed 3D points. | 
|  | int number_of_points = file_reader.Read<int>(); | 
|  | for (int i = 0; i < number_of_points; i++) { | 
|  | EuclideanPoint point; | 
|  |  | 
|  | point.track = file_reader.Read<int>(); | 
|  | ReadVector3(file_reader, &point.X); | 
|  |  | 
|  | if (point.track >= all_points->size()) { | 
|  | all_points->resize(point.track + 1); | 
|  | } | 
|  |  | 
|  | (*all_points)[point.track].track = point.track; | 
|  | (*all_points)[point.track].X = point.X; | 
|  | } | 
|  |  | 
|  | LOG(INFO) << "Read " << number_of_points << " points."; | 
|  |  | 
|  | // And finally read all markers. | 
|  | int number_of_markers = file_reader.Read<int>(); | 
|  | for (int i = 0; i < number_of_markers; i++) { | 
|  | Marker marker; | 
|  |  | 
|  | marker.image = file_reader.Read<int>(); | 
|  | marker.track = file_reader.Read<int>(); | 
|  | marker.x = file_reader.Read<float>(); | 
|  | marker.y = file_reader.Read<float>(); | 
|  |  | 
|  | all_markers->push_back(marker); | 
|  | } | 
|  |  | 
|  | LOG(INFO) << "Read " << number_of_markers << " markers."; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Apply camera intrinsics to the normalized point to get image coordinates. | 
|  | // This applies the radial lens distortion to a point which is in normalized | 
|  | // camera coordinates (i.e. the principal point is at (0, 0)) to get image | 
|  | // coordinates in pixels. Templated for use with autodifferentiation. | 
|  | template <typename T> | 
|  | inline void ApplyRadialDistortionCameraIntrinsics(const T& focal_length_x, | 
|  | const T& focal_length_y, | 
|  | const T& principal_point_x, | 
|  | const T& principal_point_y, | 
|  | const T& k1, | 
|  | const T& k2, | 
|  | const T& k3, | 
|  | const T& p1, | 
|  | const T& p2, | 
|  | const T& normalized_x, | 
|  | const T& normalized_y, | 
|  | T* image_x, | 
|  | T* image_y) { | 
|  | T x = normalized_x; | 
|  | T y = normalized_y; | 
|  |  | 
|  | // Apply distortion to the normalized points to get (xd, yd). | 
|  | T r2 = x * x + y * y; | 
|  | T r4 = r2 * r2; | 
|  | T r6 = r4 * r2; | 
|  | T r_coeff = 1.0 + k1 * r2 + k2 * r4 + k3 * r6; | 
|  | T xd = x * r_coeff + 2.0 * p1 * x * y + p2 * (r2 + 2.0 * x * x); | 
|  | T yd = y * r_coeff + 2.0 * p2 * x * y + p1 * (r2 + 2.0 * y * y); | 
|  |  | 
|  | // Apply focal length and principal point to get the final image coordinates. | 
|  | *image_x = focal_length_x * xd + principal_point_x; | 
|  | *image_y = focal_length_y * yd + principal_point_y; | 
|  | } | 
|  |  | 
|  | // Cost functor which computes reprojection error of 3D point X | 
|  | // on camera defined by angle-axis rotation and it's translation | 
|  | // (which are in the same block due to optimization reasons). | 
|  | // | 
|  | // This functor uses a radial distortion model. | 
|  | struct OpenCVReprojectionError { | 
|  | OpenCVReprojectionError(const double observed_x, const double observed_y) | 
|  | : observed_x(observed_x), observed_y(observed_y) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* const intrinsics, | 
|  | const T* const R_t,  // Rotation denoted by angle axis | 
|  | // followed with translation | 
|  | const T* const X,    // Point coordinates 3x1. | 
|  | T* residuals) const { | 
|  | // Unpack the intrinsics. | 
|  | const T& focal_length = intrinsics[OFFSET_FOCAL_LENGTH]; | 
|  | const T& principal_point_x = intrinsics[OFFSET_PRINCIPAL_POINT_X]; | 
|  | const T& principal_point_y = intrinsics[OFFSET_PRINCIPAL_POINT_Y]; | 
|  | const T& k1 = intrinsics[OFFSET_K1]; | 
|  | const T& k2 = intrinsics[OFFSET_K2]; | 
|  | const T& k3 = intrinsics[OFFSET_K3]; | 
|  | const T& p1 = intrinsics[OFFSET_P1]; | 
|  | const T& p2 = intrinsics[OFFSET_P2]; | 
|  |  | 
|  | // Compute projective coordinates: x = RX + t. | 
|  | T x[3]; | 
|  |  | 
|  | ceres::AngleAxisRotatePoint(R_t, X, x); | 
|  | x[0] += R_t[3]; | 
|  | x[1] += R_t[4]; | 
|  | x[2] += R_t[5]; | 
|  |  | 
|  | // Compute normalized coordinates: x /= x[2]. | 
|  | T xn = x[0] / x[2]; | 
|  | T yn = x[1] / x[2]; | 
|  |  | 
|  | T predicted_x, predicted_y; | 
|  |  | 
|  | // Apply distortion to the normalized points to get (xd, yd). | 
|  | // TODO(keir): Do early bailouts for zero distortion; these are expensive | 
|  | // jet operations. | 
|  | ApplyRadialDistortionCameraIntrinsics(focal_length, | 
|  | focal_length, | 
|  | principal_point_x, | 
|  | principal_point_y, | 
|  | k1, | 
|  | k2, | 
|  | k3, | 
|  | p1, | 
|  | p2, | 
|  | xn, | 
|  | yn, | 
|  | &predicted_x, | 
|  | &predicted_y); | 
|  |  | 
|  | // The error is the difference between the predicted and observed position. | 
|  | residuals[0] = predicted_x - observed_x; | 
|  | residuals[1] = predicted_y - observed_y; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const double observed_x; | 
|  | const double observed_y; | 
|  | }; | 
|  |  | 
|  | // Print a message to the log which camera intrinsics are gonna to be optimized. | 
|  | void BundleIntrinsicsLogMessage(const int bundle_intrinsics) { | 
|  | if (bundle_intrinsics == BUNDLE_NO_INTRINSICS) { | 
|  | LOG(INFO) << "Bundling only camera positions."; | 
|  | } else { | 
|  | std::string bundling_message = ""; | 
|  |  | 
|  | #define APPEND_BUNDLING_INTRINSICS(name, flag) \ | 
|  | if (bundle_intrinsics & flag) {              \ | 
|  | if (!bundling_message.empty()) {           \ | 
|  | bundling_message += ", ";                \ | 
|  | }                                          \ | 
|  | bundling_message += name;                  \ | 
|  | }                                            \ | 
|  | (void)0 | 
|  |  | 
|  | APPEND_BUNDLING_INTRINSICS("f", BUNDLE_FOCAL_LENGTH); | 
|  | APPEND_BUNDLING_INTRINSICS("px, py", BUNDLE_PRINCIPAL_POINT); | 
|  | APPEND_BUNDLING_INTRINSICS("k1", BUNDLE_RADIAL_K1); | 
|  | APPEND_BUNDLING_INTRINSICS("k2", BUNDLE_RADIAL_K2); | 
|  | APPEND_BUNDLING_INTRINSICS("p1", BUNDLE_TANGENTIAL_P1); | 
|  | APPEND_BUNDLING_INTRINSICS("p2", BUNDLE_TANGENTIAL_P2); | 
|  |  | 
|  | LOG(INFO) << "Bundling " << bundling_message << "."; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print a message to the log containing all the camera intriniscs values. | 
|  | void PrintCameraIntrinsics(const char* text, const double* camera_intrinsics) { | 
|  | std::ostringstream intrinsics_output; | 
|  |  | 
|  | intrinsics_output << "f=" << camera_intrinsics[OFFSET_FOCAL_LENGTH]; | 
|  |  | 
|  | intrinsics_output << " cx=" << camera_intrinsics[OFFSET_PRINCIPAL_POINT_X] | 
|  | << " cy=" << camera_intrinsics[OFFSET_PRINCIPAL_POINT_Y]; | 
|  |  | 
|  | #define APPEND_DISTORTION_COEFFICIENT(name, offset)                   \ | 
|  | {                                                                   \ | 
|  | if (camera_intrinsics[offset] != 0.0) {                           \ | 
|  | intrinsics_output << " " name "=" << camera_intrinsics[offset]; \ | 
|  | }                                                                 \ | 
|  | }                                                                   \ | 
|  | (void)0 | 
|  |  | 
|  | APPEND_DISTORTION_COEFFICIENT("k1", OFFSET_K1); | 
|  | APPEND_DISTORTION_COEFFICIENT("k2", OFFSET_K2); | 
|  | APPEND_DISTORTION_COEFFICIENT("k3", OFFSET_K3); | 
|  | APPEND_DISTORTION_COEFFICIENT("p1", OFFSET_P1); | 
|  | APPEND_DISTORTION_COEFFICIENT("p2", OFFSET_P2); | 
|  |  | 
|  | #undef APPEND_DISTORTION_COEFFICIENT | 
|  |  | 
|  | LOG(INFO) << text << intrinsics_output.str(); | 
|  | } | 
|  |  | 
|  | // Get a vector of camera's rotations denoted by angle axis | 
|  | // conjuncted with translations into single block | 
|  | // | 
|  | // Element with index i matches to a rotation+translation for | 
|  | // camera at image i. | 
|  | vector<Vec6> PackCamerasRotationAndTranslation( | 
|  | const vector<Marker>& all_markers, | 
|  | const vector<EuclideanCamera>& all_cameras) { | 
|  | vector<Vec6> all_cameras_R_t; | 
|  | int max_image = MaxImage(all_markers); | 
|  |  | 
|  | all_cameras_R_t.resize(max_image + 1); | 
|  |  | 
|  | for (int i = 0; i <= max_image; i++) { | 
|  | const EuclideanCamera* camera = CameraForImage(all_cameras, i); | 
|  |  | 
|  | if (!camera) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ceres::RotationMatrixToAngleAxis(&camera->R(0, 0), &all_cameras_R_t[i](0)); | 
|  | all_cameras_R_t[i].tail<3>() = camera->t; | 
|  | } | 
|  |  | 
|  | return all_cameras_R_t; | 
|  | } | 
|  |  | 
|  | // Convert cameras rotations fro mangle axis back to rotation matrix. | 
|  | void UnpackCamerasRotationAndTranslation(const vector<Marker>& all_markers, | 
|  | const vector<Vec6>& all_cameras_R_t, | 
|  | vector<EuclideanCamera>* all_cameras) { | 
|  | int max_image = MaxImage(all_markers); | 
|  |  | 
|  | for (int i = 0; i <= max_image; i++) { | 
|  | EuclideanCamera* camera = CameraForImage(all_cameras, i); | 
|  |  | 
|  | if (!camera) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ceres::AngleAxisToRotationMatrix(&all_cameras_R_t[i](0), &camera->R(0, 0)); | 
|  | camera->t = all_cameras_R_t[i].tail<3>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EuclideanBundleCommonIntrinsics(const vector<Marker>& all_markers, | 
|  | const int bundle_intrinsics, | 
|  | const int bundle_constraints, | 
|  | double* camera_intrinsics, | 
|  | vector<EuclideanCamera>* all_cameras, | 
|  | vector<EuclideanPoint>* all_points) { | 
|  | PrintCameraIntrinsics("Original intrinsics: ", camera_intrinsics); | 
|  |  | 
|  | ceres::Problem::Options problem_options; | 
|  | problem_options.cost_function_ownership = ceres::DO_NOT_TAKE_OWNERSHIP; | 
|  | ceres::Problem problem(problem_options); | 
|  |  | 
|  | // Convert cameras rotations to angle axis and merge with translation | 
|  | // into single parameter block for maximal minimization speed | 
|  | // | 
|  | // Block for minimization has got the following structure: | 
|  | //   <3 elements for angle-axis> <3 elements for translation> | 
|  | vector<Vec6> all_cameras_R_t = | 
|  | PackCamerasRotationAndTranslation(all_markers, *all_cameras); | 
|  |  | 
|  | // Manifold used to restrict camera motion for modal solvers. | 
|  | ceres::SubsetManifold* constant_transform_manifold = nullptr; | 
|  | if (bundle_constraints & BUNDLE_NO_TRANSLATION) { | 
|  | std::vector<int> constant_translation; | 
|  |  | 
|  | // First three elements are rotation, last three are translation. | 
|  | constant_translation.push_back(3); | 
|  | constant_translation.push_back(4); | 
|  | constant_translation.push_back(5); | 
|  |  | 
|  | constant_transform_manifold = | 
|  | new ceres::SubsetManifold(6, constant_translation); | 
|  | } | 
|  |  | 
|  | std::vector<OpenCVReprojectionError> errors; | 
|  | std::vector<ceres::AutoDiffCostFunction<OpenCVReprojectionError, 2, 8, 6, 3>> | 
|  | costFunctions; | 
|  | errors.reserve(all_markers.size()); | 
|  | costFunctions.reserve(all_markers.size()); | 
|  |  | 
|  | int num_residuals = 0; | 
|  | bool have_locked_camera = false; | 
|  | for (const auto& marker : all_markers) { | 
|  | EuclideanCamera* camera = CameraForImage(all_cameras, marker.image); | 
|  | EuclideanPoint* point = PointForTrack(all_points, marker.track); | 
|  | if (camera == nullptr || point == nullptr) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Rotation of camera denoted in angle axis followed with | 
|  | // camera translaiton. | 
|  | double* current_camera_R_t = &all_cameras_R_t[camera->image](0); | 
|  |  | 
|  | errors.emplace_back(marker.x, marker.y); | 
|  | costFunctions.emplace_back(&errors.back(), ceres::DO_NOT_TAKE_OWNERSHIP); | 
|  |  | 
|  | problem.AddResidualBlock(&costFunctions.back(), | 
|  | nullptr, | 
|  | camera_intrinsics, | 
|  | current_camera_R_t, | 
|  | &point->X(0)); | 
|  |  | 
|  | // We lock the first camera to better deal with scene orientation ambiguity. | 
|  | if (!have_locked_camera) { | 
|  | problem.SetParameterBlockConstant(current_camera_R_t); | 
|  | have_locked_camera = true; | 
|  | } | 
|  |  | 
|  | if (bundle_constraints & BUNDLE_NO_TRANSLATION) { | 
|  | problem.SetManifold(current_camera_R_t, constant_transform_manifold); | 
|  | } | 
|  |  | 
|  | num_residuals++; | 
|  | } | 
|  | LOG(INFO) << "Number of residuals: " << num_residuals; | 
|  |  | 
|  | if (!num_residuals) { | 
|  | LOG(INFO) << "Skipping running minimizer with zero residuals"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | BundleIntrinsicsLogMessage(bundle_intrinsics); | 
|  |  | 
|  | if (bundle_intrinsics == BUNDLE_NO_INTRINSICS) { | 
|  | // No camera intrinsics are being refined, | 
|  | // set the whole parameter block as constant for best performance. | 
|  | problem.SetParameterBlockConstant(camera_intrinsics); | 
|  | } else { | 
|  | // Set the camera intrinsics that are not to be bundled as | 
|  | // constant using some macro trickery. | 
|  |  | 
|  | std::vector<int> constant_intrinsics; | 
|  | #define MAYBE_SET_CONSTANT(bundle_enum, offset) \ | 
|  | if (!(bundle_intrinsics & bundle_enum)) {     \ | 
|  | constant_intrinsics.push_back(offset);      \ | 
|  | } | 
|  | MAYBE_SET_CONSTANT(BUNDLE_FOCAL_LENGTH, OFFSET_FOCAL_LENGTH); | 
|  | MAYBE_SET_CONSTANT(BUNDLE_PRINCIPAL_POINT, OFFSET_PRINCIPAL_POINT_X); | 
|  | MAYBE_SET_CONSTANT(BUNDLE_PRINCIPAL_POINT, OFFSET_PRINCIPAL_POINT_Y); | 
|  | MAYBE_SET_CONSTANT(BUNDLE_RADIAL_K1, OFFSET_K1); | 
|  | MAYBE_SET_CONSTANT(BUNDLE_RADIAL_K2, OFFSET_K2); | 
|  | MAYBE_SET_CONSTANT(BUNDLE_TANGENTIAL_P1, OFFSET_P1); | 
|  | MAYBE_SET_CONSTANT(BUNDLE_TANGENTIAL_P2, OFFSET_P2); | 
|  | #undef MAYBE_SET_CONSTANT | 
|  |  | 
|  | // Always set K3 constant, it's not used at the moment. | 
|  | constant_intrinsics.push_back(OFFSET_K3); | 
|  |  | 
|  | auto* subset_manifold = new ceres::SubsetManifold(8, constant_intrinsics); | 
|  | problem.SetManifold(camera_intrinsics, subset_manifold); | 
|  | } | 
|  |  | 
|  | // Configure the solver. | 
|  | ceres::Solver::Options options; | 
|  | options.use_nonmonotonic_steps = true; | 
|  | options.preconditioner_type = ceres::SCHUR_JACOBI; | 
|  | options.linear_solver_type = ceres::ITERATIVE_SCHUR; | 
|  | options.use_inner_iterations = true; | 
|  | options.max_num_iterations = 100; | 
|  | options.minimizer_progress_to_stdout = true; | 
|  |  | 
|  | // Solve! | 
|  | ceres::Solver::Summary summary; | 
|  | ceres::Solve(options, &problem, &summary); | 
|  |  | 
|  | std::cout << "Final report:\n" << summary.FullReport(); | 
|  |  | 
|  | // Copy rotations and translations back. | 
|  | UnpackCamerasRotationAndTranslation( | 
|  | all_markers, all_cameras_R_t, all_cameras); | 
|  |  | 
|  | PrintCameraIntrinsics("Final intrinsics: ", camera_intrinsics); | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); | 
|  | google::InitGoogleLogging(argv[0]); | 
|  |  | 
|  | if (CERES_GET_FLAG(FLAGS_input).empty()) { | 
|  | LOG(ERROR) << "Usage: libmv_bundle_adjuster --input=blender_problem"; | 
|  | return EXIT_FAILURE; | 
|  | } | 
|  |  | 
|  | double camera_intrinsics[8]; | 
|  | vector<EuclideanCamera> all_cameras; | 
|  | vector<EuclideanPoint> all_points; | 
|  | bool is_image_space; | 
|  | vector<Marker> all_markers; | 
|  |  | 
|  | if (!ReadProblemFromFile(CERES_GET_FLAG(FLAGS_input), | 
|  | camera_intrinsics, | 
|  | &all_cameras, | 
|  | &all_points, | 
|  | &is_image_space, | 
|  | &all_markers)) { | 
|  | LOG(ERROR) << "Error reading problem file"; | 
|  | return EXIT_FAILURE; | 
|  | } | 
|  |  | 
|  | // If there's no refine_intrinsics passed via command line | 
|  | // (in this case FLAGS_refine_intrinsics will be an empty string) | 
|  | // we use problem's settings to detect whether intrinsics | 
|  | // shall be refined or not. | 
|  | // | 
|  | // Namely, if problem has got markers stored in image (pixel) | 
|  | // space, we do full intrinsics refinement. If markers are | 
|  | // stored in normalized space, and refine_intrinsics is not | 
|  | // set, no refining will happen. | 
|  | // | 
|  | // Using command line argument refine_intrinsics will explicitly | 
|  | // declare which intrinsics need to be refined and in this case | 
|  | // refining flags does not depend on problem at all. | 
|  | int bundle_intrinsics = BUNDLE_NO_INTRINSICS; | 
|  | if (CERES_GET_FLAG(FLAGS_refine_intrinsics).empty()) { | 
|  | if (is_image_space) { | 
|  | bundle_intrinsics = BUNDLE_FOCAL_LENGTH | BUNDLE_RADIAL; | 
|  | } | 
|  | } else { | 
|  | if (CERES_GET_FLAG(FLAGS_refine_intrinsics) == "radial") { | 
|  | bundle_intrinsics = BUNDLE_FOCAL_LENGTH | BUNDLE_RADIAL; | 
|  | } else if (CERES_GET_FLAG(FLAGS_refine_intrinsics) != "none") { | 
|  | LOG(ERROR) << "Unsupported value for refine-intrinsics"; | 
|  | return EXIT_FAILURE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Run the bundler. | 
|  | EuclideanBundleCommonIntrinsics(all_markers, | 
|  | bundle_intrinsics, | 
|  | BUNDLE_NO_CONSTRAINTS, | 
|  | camera_intrinsics, | 
|  | &all_cameras, | 
|  | &all_points); | 
|  |  | 
|  | return EXIT_SUCCESS; | 
|  | } |