|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Copyright (c) 2014 libmv authors. | 
|  | // | 
|  | // Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | // of this software and associated documentation files (the "Software"), to | 
|  | // deal in the Software without restriction, including without limitation the | 
|  | // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | 
|  | // sell copies of the Software, and to permit persons to whom the Software is | 
|  | // furnished to do so, subject to the following conditions: | 
|  | // | 
|  | // The above copyright notice and this permission notice shall be included in | 
|  | // all copies or substantial portions of the Software. | 
|  | // | 
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|  | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
|  | // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
|  | // IN THE SOFTWARE. | 
|  | // | 
|  | // Author: sergey.vfx@gmail.com (Sergey Sharybin) | 
|  | // | 
|  | // This file demonstrates solving for a homography between two sets of points. | 
|  | // A homography describes a transformation between a sets of points on a plane, | 
|  | // perspectively projected into two images. The first step is to solve a | 
|  | // homogeneous system of equations via singular value decomposition, giving an | 
|  | // algebraic solution for the homography, then solving for a final solution by | 
|  | // minimizing the symmetric transfer error in image space with Ceres (called the | 
|  | // Gold Standard Solution in "Multiple View Geometry"). The routines are based | 
|  | // on the routines from the Libmv library. | 
|  | // | 
|  | // This example demonstrates custom exit criterion by having a callback check | 
|  | // for image-space error. | 
|  |  | 
|  | #include <utility> | 
|  |  | 
|  | #include "ceres/ceres.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | using EigenDouble = Eigen::NumTraits<double>; | 
|  |  | 
|  | using Mat = Eigen::MatrixXd; | 
|  | using Vec = Eigen::VectorXd; | 
|  | using Mat3 = Eigen::Matrix<double, 3, 3>; | 
|  | using Vec2 = Eigen::Matrix<double, 2, 1>; | 
|  | using MatX8 = Eigen::Matrix<double, Eigen::Dynamic, 8>; | 
|  | using Vec3 = Eigen::Vector3d; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // This structure contains options that controls how the homography | 
|  | // estimation operates. | 
|  | // | 
|  | // Defaults should be suitable for a wide range of use cases, but | 
|  | // better performance and accuracy might require tweaking. | 
|  | struct EstimateHomographyOptions { | 
|  | // Default settings for homography estimation which should be suitable | 
|  | // for a wide range of use cases. | 
|  | EstimateHomographyOptions() = default; | 
|  |  | 
|  | // Maximal number of iterations for the refinement step. | 
|  | int max_num_iterations{50}; | 
|  |  | 
|  | // Expected average of symmetric geometric distance between | 
|  | // actual destination points and original ones transformed by | 
|  | // estimated homography matrix. | 
|  | // | 
|  | // Refinement will finish as soon as average of symmetric | 
|  | // geometric distance is less or equal to this value. | 
|  | // | 
|  | // This distance is measured in the same units as input points are. | 
|  | double expected_average_symmetric_distance{1e-16}; | 
|  | }; | 
|  |  | 
|  | // Calculate symmetric geometric cost terms: | 
|  | // | 
|  | // forward_error = D(H * x1, x2) | 
|  | // backward_error = D(H^-1 * x2, x1) | 
|  | // | 
|  | // Templated to be used with autodifferentiation. | 
|  | template <typename T> | 
|  | void SymmetricGeometricDistanceTerms(const Eigen::Matrix<T, 3, 3>& H, | 
|  | const Eigen::Matrix<T, 2, 1>& x1, | 
|  | const Eigen::Matrix<T, 2, 1>& x2, | 
|  | T forward_error[2], | 
|  | T backward_error[2]) { | 
|  | using Vec3 = Eigen::Matrix<T, 3, 1>; | 
|  | Vec3 x(x1(0), x1(1), T(1.0)); | 
|  | Vec3 y(x2(0), x2(1), T(1.0)); | 
|  |  | 
|  | Vec3 H_x = H * x; | 
|  | Vec3 Hinv_y = H.inverse() * y; | 
|  |  | 
|  | H_x /= H_x(2); | 
|  | Hinv_y /= Hinv_y(2); | 
|  |  | 
|  | forward_error[0] = H_x(0) - y(0); | 
|  | forward_error[1] = H_x(1) - y(1); | 
|  | backward_error[0] = Hinv_y(0) - x(0); | 
|  | backward_error[1] = Hinv_y(1) - x(1); | 
|  | } | 
|  |  | 
|  | // Calculate symmetric geometric cost: | 
|  | // | 
|  | //   D(H * x1, x2)^2 + D(H^-1 * x2, x1)^2 | 
|  | // | 
|  | double SymmetricGeometricDistance(const Mat3& H, | 
|  | const Vec2& x1, | 
|  | const Vec2& x2) { | 
|  | Vec2 forward_error, backward_error; | 
|  | SymmetricGeometricDistanceTerms<double>( | 
|  | H, x1, x2, forward_error.data(), backward_error.data()); | 
|  | return forward_error.squaredNorm() + backward_error.squaredNorm(); | 
|  | } | 
|  |  | 
|  | // A parameterization of the 2D homography matrix that uses 8 parameters so | 
|  | // that the matrix is normalized (H(2,2) == 1). | 
|  | // The homography matrix H is built from a list of 8 parameters (a, b,...g, h) | 
|  | // as follows | 
|  | // | 
|  | //         |a b c| | 
|  | //     H = |d e f| | 
|  | //         |g h 1| | 
|  | // | 
|  | template <typename T = double> | 
|  | class Homography2DNormalizedParameterization { | 
|  | public: | 
|  | using Parameters = Eigen::Matrix<T, 8, 1>;     // a, b, ... g, h | 
|  | using Parameterized = Eigen::Matrix<T, 3, 3>;  // H | 
|  |  | 
|  | // Convert from the 8 parameters to a H matrix. | 
|  | static void To(const Parameters& p, Parameterized* h) { | 
|  | // clang-format off | 
|  | *h << p(0), p(1), p(2), | 
|  | p(3), p(4), p(5), | 
|  | p(6), p(7), 1.0; | 
|  | // clang-format on | 
|  | } | 
|  |  | 
|  | // Convert from a H matrix to the 8 parameters. | 
|  | static void From(const Parameterized& h, Parameters* p) { | 
|  | // clang-format off | 
|  | *p << h(0, 0), h(0, 1), h(0, 2), | 
|  | h(1, 0), h(1, 1), h(1, 2), | 
|  | h(2, 0), h(2, 1); | 
|  | // clang-format on | 
|  | } | 
|  | }; | 
|  |  | 
|  | // 2D Homography transformation estimation in the case that points are in | 
|  | // euclidean coordinates. | 
|  | // | 
|  | //   x = H y | 
|  | // | 
|  | // x and y vector must have the same direction, we could write | 
|  | // | 
|  | //   crossproduct(|x|, * H * |y| ) = |0| | 
|  | // | 
|  | //   | 0 -1  x2|   |a b c|   |y1|    |0| | 
|  | //   | 1  0 -x1| * |d e f| * |y2| =  |0| | 
|  | //   |-x2  x1 0|   |g h 1|   |1 |    |0| | 
|  | // | 
|  | // That gives: | 
|  | // | 
|  | //   (-d+x2*g)*y1    + (-e+x2*h)*y2 + -f+x2          |0| | 
|  | //   (a-x1*g)*y1     + (b-x1*h)*y2  + c-x1         = |0| | 
|  | //   (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f  |0| | 
|  | // | 
|  | bool Homography2DFromCorrespondencesLinearEuc(const Mat& x1, | 
|  | const Mat& x2, | 
|  | Mat3* H, | 
|  | double expected_precision) { | 
|  | assert(2 == x1.rows()); | 
|  | assert(4 <= x1.cols()); | 
|  | assert(x1.rows() == x2.rows()); | 
|  | assert(x1.cols() == x2.cols()); | 
|  |  | 
|  | int n = x1.cols(); | 
|  | MatX8 L = Mat::Zero(n * 3, 8); | 
|  | Mat b = Mat::Zero(n * 3, 1); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | int j = 3 * i; | 
|  | L(j, 0) = x1(0, i);              // a | 
|  | L(j, 1) = x1(1, i);              // b | 
|  | L(j, 2) = 1.0;                   // c | 
|  | L(j, 6) = -x2(0, i) * x1(0, i);  // g | 
|  | L(j, 7) = -x2(0, i) * x1(1, i);  // h | 
|  | b(j, 0) = x2(0, i);              // i | 
|  |  | 
|  | ++j; | 
|  | L(j, 3) = x1(0, i);              // d | 
|  | L(j, 4) = x1(1, i);              // e | 
|  | L(j, 5) = 1.0;                   // f | 
|  | L(j, 6) = -x2(1, i) * x1(0, i);  // g | 
|  | L(j, 7) = -x2(1, i) * x1(1, i);  // h | 
|  | b(j, 0) = x2(1, i);              // i | 
|  |  | 
|  | // This ensures better stability | 
|  | // TODO(julien) make a lite version without this 3rd set | 
|  | ++j; | 
|  | L(j, 0) = x2(1, i) * x1(0, i);   // a | 
|  | L(j, 1) = x2(1, i) * x1(1, i);   // b | 
|  | L(j, 2) = x2(1, i);              // c | 
|  | L(j, 3) = -x2(0, i) * x1(0, i);  // d | 
|  | L(j, 4) = -x2(0, i) * x1(1, i);  // e | 
|  | L(j, 5) = -x2(0, i);             // f | 
|  | } | 
|  | // Solve Lx=B | 
|  | const Vec h = L.fullPivLu().solve(b); | 
|  | Homography2DNormalizedParameterization<double>::To(h, H); | 
|  | return (L * h).isApprox(b, expected_precision); | 
|  | } | 
|  |  | 
|  | // Cost functor which computes symmetric geometric distance | 
|  | // used for homography matrix refinement. | 
|  | class HomographySymmetricGeometricCostFunctor { | 
|  | public: | 
|  | HomographySymmetricGeometricCostFunctor(Vec2 x, Vec2 y) | 
|  | : x_(std::move(x)), y_(std::move(y)) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* homography_parameters, T* residuals) const { | 
|  | using Mat3 = Eigen::Matrix<T, 3, 3>; | 
|  | using Vec2 = Eigen::Matrix<T, 2, 1>; | 
|  |  | 
|  | Mat3 H(homography_parameters); | 
|  | Vec2 x(T(x_(0)), T(x_(1))); | 
|  | Vec2 y(T(y_(0)), T(y_(1))); | 
|  |  | 
|  | SymmetricGeometricDistanceTerms<T>(H, x, y, &residuals[0], &residuals[2]); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const Vec2 x_; | 
|  | const Vec2 y_; | 
|  | }; | 
|  |  | 
|  | // Termination checking callback. This is needed to finish the | 
|  | // optimization when an absolute error threshold is met, as opposed | 
|  | // to Ceres's function_tolerance, which provides for finishing when | 
|  | // successful steps reduce the cost function by a fractional amount. | 
|  | // In this case, the callback checks for the absolute average reprojection | 
|  | // error and terminates when it's below a threshold (for example all | 
|  | // points < 0.5px error). | 
|  | class TerminationCheckingCallback : public ceres::IterationCallback { | 
|  | public: | 
|  | TerminationCheckingCallback(const Mat& x1, | 
|  | const Mat& x2, | 
|  | const EstimateHomographyOptions& options, | 
|  | Mat3* H) | 
|  | : options_(options), x1_(x1), x2_(x2), H_(H) {} | 
|  |  | 
|  | ceres::CallbackReturnType operator()( | 
|  | const ceres::IterationSummary& summary) override { | 
|  | // If the step wasn't successful, there's nothing to do. | 
|  | if (!summary.step_is_successful) { | 
|  | return ceres::SOLVER_CONTINUE; | 
|  | } | 
|  |  | 
|  | // Calculate average of symmetric geometric distance. | 
|  | double average_distance = 0.0; | 
|  | for (int i = 0; i < x1_.cols(); i++) { | 
|  | average_distance += | 
|  | SymmetricGeometricDistance(*H_, x1_.col(i), x2_.col(i)); | 
|  | } | 
|  | average_distance /= x1_.cols(); | 
|  |  | 
|  | if (average_distance <= options_.expected_average_symmetric_distance) { | 
|  | return ceres::SOLVER_TERMINATE_SUCCESSFULLY; | 
|  | } | 
|  |  | 
|  | return ceres::SOLVER_CONTINUE; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const EstimateHomographyOptions& options_; | 
|  | const Mat& x1_; | 
|  | const Mat& x2_; | 
|  | Mat3* H_; | 
|  | }; | 
|  |  | 
|  | bool EstimateHomography2DFromCorrespondences( | 
|  | const Mat& x1, | 
|  | const Mat& x2, | 
|  | const EstimateHomographyOptions& options, | 
|  | Mat3* H) { | 
|  | assert(2 == x1.rows()); | 
|  | assert(4 <= x1.cols()); | 
|  | assert(x1.rows() == x2.rows()); | 
|  | assert(x1.cols() == x2.cols()); | 
|  |  | 
|  | // Step 1: Algebraic homography estimation. | 
|  | // Assume algebraic estimation always succeeds. | 
|  | Homography2DFromCorrespondencesLinearEuc( | 
|  | x1, x2, H, EigenDouble::dummy_precision()); | 
|  |  | 
|  | LOG(INFO) << "Estimated matrix after algebraic estimation:\n" << *H; | 
|  |  | 
|  | // Step 2: Refine matrix using Ceres minimizer. | 
|  | ceres::Problem problem; | 
|  | for (int i = 0; i < x1.cols(); i++) { | 
|  | auto* homography_symmetric_geometric_cost_function = | 
|  | new HomographySymmetricGeometricCostFunctor(x1.col(i), x2.col(i)); | 
|  |  | 
|  | problem.AddResidualBlock( | 
|  | new ceres::AutoDiffCostFunction<HomographySymmetricGeometricCostFunctor, | 
|  | 4,  // num_residuals | 
|  | 9>( | 
|  | homography_symmetric_geometric_cost_function), | 
|  | nullptr, | 
|  | H->data()); | 
|  | } | 
|  |  | 
|  | // Configure the solve. | 
|  | ceres::Solver::Options solver_options; | 
|  | solver_options.linear_solver_type = ceres::DENSE_QR; | 
|  | solver_options.max_num_iterations = options.max_num_iterations; | 
|  | solver_options.update_state_every_iteration = true; | 
|  |  | 
|  | // Terminate if the average symmetric distance is good enough. | 
|  | TerminationCheckingCallback callback(x1, x2, options, H); | 
|  | solver_options.callbacks.push_back(&callback); | 
|  |  | 
|  | // Run the solve. | 
|  | ceres::Solver::Summary summary; | 
|  | ceres::Solve(solver_options, &problem, &summary); | 
|  |  | 
|  | LOG(INFO) << "Summary:\n" << summary.FullReport(); | 
|  | LOG(INFO) << "Final refined matrix:\n" << *H; | 
|  |  | 
|  | return summary.IsSolutionUsable(); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | google::InitGoogleLogging(argv[0]); | 
|  |  | 
|  | Mat x1(2, 100); | 
|  | for (int i = 0; i < x1.cols(); ++i) { | 
|  | x1(0, i) = rand() % 1024; | 
|  | x1(1, i) = rand() % 1024; | 
|  | } | 
|  |  | 
|  | Mat3 homography_matrix; | 
|  | // This matrix has been dumped from a Blender test file of plane tracking. | 
|  | // clang-format off | 
|  | homography_matrix << 1.243715, -0.461057, -111.964454, | 
|  | 0.0,       0.617589, -192.379252, | 
|  | 0.0,      -0.000983,    1.0; | 
|  | // clang-format on | 
|  |  | 
|  | Mat x2 = x1; | 
|  | for (int i = 0; i < x2.cols(); ++i) { | 
|  | Vec3 homogenous_x1 = Vec3(x1(0, i), x1(1, i), 1.0); | 
|  | Vec3 homogenous_x2 = homography_matrix * homogenous_x1; | 
|  | x2(0, i) = homogenous_x2(0) / homogenous_x2(2); | 
|  | x2(1, i) = homogenous_x2(1) / homogenous_x2(2); | 
|  |  | 
|  | // Apply some noise so algebraic estimation is not good enough. | 
|  | x2(0, i) += static_cast<double>(rand() % 1000) / 5000.0; | 
|  | x2(1, i) += static_cast<double>(rand() % 1000) / 5000.0; | 
|  | } | 
|  |  | 
|  | Mat3 estimated_matrix; | 
|  |  | 
|  | EstimateHomographyOptions options; | 
|  | options.expected_average_symmetric_distance = 0.02; | 
|  | EstimateHomography2DFromCorrespondences(x1, x2, options, &estimated_matrix); | 
|  |  | 
|  | // Normalize the matrix for easier comparison. | 
|  | estimated_matrix /= estimated_matrix(2, 2); | 
|  |  | 
|  | std::cout << "Original matrix:\n" << homography_matrix << "\n"; | 
|  | std::cout << "Estimated matrix:\n" << estimated_matrix << "\n"; | 
|  |  | 
|  | return EXIT_SUCCESS; | 
|  | } |