|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // Test problems from the paper | 
|  | // | 
|  | // Testing Unconstrained Optimization Software | 
|  | // Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom | 
|  | // ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981 | 
|  | // | 
|  | // A subset of these problems were augmented with bounds and used for | 
|  | // testing bounds constrained optimization algorithms by | 
|  | // | 
|  | // A Trust Region Approach to Linearly Constrained Optimization | 
|  | // David M. Gay | 
|  | // Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105 | 
|  | // Lecture Notes in Mathematics 1066, Springer Verlag, 1984. | 
|  | // | 
|  | // The latter paper is behind a paywall. We obtained the bounds on the | 
|  | // variables and the function values at the global minimums from | 
|  | // | 
|  | // http://www.mat.univie.ac.at/~neum/glopt/bounds.html | 
|  | // | 
|  | // A problem is considered solved if of the log relative error of its | 
|  | // objective function is at least 4. | 
|  |  | 
|  | #include <cmath> | 
|  | #include <iostream>  // NOLINT | 
|  | #include <sstream>   // NOLINT | 
|  | #include <string> | 
|  |  | 
|  | #include "ceres/ceres.h" | 
|  | #include "gflags/gflags.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | DEFINE_string(problem, "all", "Which problem to solve"); | 
|  | DEFINE_bool(use_numeric_diff, | 
|  | false, | 
|  | "Use numeric differentiation instead of automatic" | 
|  | " differentiation."); | 
|  | DEFINE_string(numeric_diff_method, | 
|  | "ridders", | 
|  | "When using numeric differentiation, selects algorithm. Options " | 
|  | "are: central, forward, ridders."); | 
|  | DEFINE_int32(ridders_extrapolations, | 
|  | 3, | 
|  | "Maximal number of extrapolations in Ridders' method."); | 
|  |  | 
|  | namespace ceres { | 
|  | namespace examples { | 
|  |  | 
|  | const double kDoubleMax = std::numeric_limits<double>::max(); | 
|  |  | 
|  | static void SetNumericDiffOptions(ceres::NumericDiffOptions* options) { | 
|  | options->max_num_ridders_extrapolations = | 
|  | CERES_GET_FLAG(FLAGS_ridders_extrapolations); | 
|  | } | 
|  |  | 
|  | #define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals)                \ | 
|  | struct name {                                                               \ | 
|  | static constexpr int kNumParameters = num_parameters;                     \ | 
|  | static const double initial_x[kNumParameters];                            \ | 
|  | static const double lower_bounds[kNumParameters];                         \ | 
|  | static const double upper_bounds[kNumParameters];                         \ | 
|  | static const double constrained_optimal_cost;                             \ | 
|  | static const double unconstrained_optimal_cost;                           \ | 
|  | static CostFunction* Create() {                                           \ | 
|  | if (CERES_GET_FLAG(FLAGS_use_numeric_diff)) {                           \ | 
|  | ceres::NumericDiffOptions options;                                    \ | 
|  | SetNumericDiffOptions(&options);                                      \ | 
|  | if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "central") {         \ | 
|  | return new NumericDiffCostFunction<name,                            \ | 
|  | ceres::CENTRAL,                  \ | 
|  | num_residuals,                   \ | 
|  | num_parameters>(                 \ | 
|  | new name, ceres::TAKE_OWNERSHIP, num_residuals, options);       \ | 
|  | } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "forward") {  \ | 
|  | return new NumericDiffCostFunction<name,                            \ | 
|  | ceres::FORWARD,                  \ | 
|  | num_residuals,                   \ | 
|  | num_parameters>(                 \ | 
|  | new name, ceres::TAKE_OWNERSHIP, num_residuals, options);       \ | 
|  | } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "ridders") {  \ | 
|  | return new NumericDiffCostFunction<name,                            \ | 
|  | ceres::RIDDERS,                  \ | 
|  | num_residuals,                   \ | 
|  | num_parameters>(                 \ | 
|  | new name, ceres::TAKE_OWNERSHIP, num_residuals, options);       \ | 
|  | } else {                                                              \ | 
|  | LOG(ERROR) << "Invalid numeric diff method specified";              \ | 
|  | return nullptr;                                                     \ | 
|  | }                                                                     \ | 
|  | } else {                                                                \ | 
|  | return new AutoDiffCostFunction<name, num_residuals, num_parameters>( \ | 
|  | new name);                                                        \ | 
|  | }                                                                       \ | 
|  | }                                                                         \ | 
|  | template <typename T>                                                     \ | 
|  | bool operator()(const T* const x, T* residual) const { | 
|  | // clang-format off | 
|  |  | 
|  | #define END_MGH_PROBLEM return true; } };  // NOLINT | 
|  |  | 
|  | // Rosenbrock function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem1, 2, 2) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = 10.0 * (x2 - x1 * x1); | 
|  | residual[1] = 1.0 - x1; | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem1::initial_x[] = {-1.2, 1.0}; | 
|  | const double TestProblem1::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem1::upper_bounds[] = {kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem1::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem1::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Freudenstein and Roth function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem2, 2, 2) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = -13.0 + x1 + ((5.0 - x2) * x2 - 2.0) * x2; | 
|  | residual[1] = -29.0 + x1 + ((x2 + 1.0) * x2 - 14.0) * x2; | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem2::initial_x[] = {0.5, -2.0}; | 
|  | const double TestProblem2::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem2::upper_bounds[] = {kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem2::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem2::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Powell badly scaled function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem3, 2, 2) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = 10000.0 * x1 * x2 - 1.0; | 
|  | residual[1] = exp(-x1) + exp(-x2) - 1.0001; | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem3::initial_x[] = {0.0, 1.0}; | 
|  | const double TestProblem3::lower_bounds[] = {0.0, 1.0}; | 
|  | const double TestProblem3::upper_bounds[] = {1.0, 9.0}; | 
|  | const double TestProblem3::constrained_optimal_cost = 0.15125900e-9; | 
|  | const double TestProblem3::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Brown badly scaled function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem4, 2, 3) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = x1  - 1000000.0; | 
|  | residual[1] = x2 - 0.000002; | 
|  | residual[2] = x1 * x2 - 2.0; | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem4::initial_x[] = {1.0, 1.0}; | 
|  | const double TestProblem4::lower_bounds[] = {0.0, 0.00003}; | 
|  | const double TestProblem4::upper_bounds[] = {1000000.0, 100.0}; | 
|  | const double TestProblem4::constrained_optimal_cost = 0.78400000e3; | 
|  | const double TestProblem4::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Beale function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem5, 2, 3) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = 1.5 - x1 * (1.0 - x2); | 
|  | residual[1] = 2.25 - x1 * (1.0 - x2 * x2); | 
|  | residual[2] = 2.625 - x1 * (1.0 - x2 * x2 * x2); | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem5::initial_x[] = {1.0, 1.0}; | 
|  | const double TestProblem5::lower_bounds[] = {0.6, 0.5}; | 
|  | const double TestProblem5::upper_bounds[] = {10.0, 100.0}; | 
|  | const double TestProblem5::constrained_optimal_cost = 0.0; | 
|  | const double TestProblem5::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Jennrich and Sampson function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem6, 2, 10) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | for (int i = 1; i <= 10; ++i) { | 
|  | residual[i - 1] = 2.0 + 2.0 * i - | 
|  | (exp(static_cast<double>(i) * x1) + | 
|  | exp(static_cast<double>(i) * x2)); | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem6::initial_x[] = {1.0, 1.0}; | 
|  | const double TestProblem6::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem6::upper_bounds[] = {kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem6::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem6::unconstrained_optimal_cost = 124.362; | 
|  |  | 
|  | // Helical valley function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem7, 3, 3) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | const T theta = (0.5 / M_PI)  * atan(x2 / x1) + (x1 > 0.0 ? 0.0 : 0.5); | 
|  | residual[0] = 10.0 * (x3 - 10.0 * theta); | 
|  | residual[1] = 10.0 * (sqrt(x1 * x1 + x2 * x2) - 1.0); | 
|  | residual[2] = x3; | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0}; | 
|  | const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0}; | 
|  | const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0}; | 
|  | const double TestProblem7::constrained_optimal_cost = 0.99042212; | 
|  | const double TestProblem7::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Bard function | 
|  | BEGIN_MGH_PROBLEM(TestProblem8, 3, 15) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  |  | 
|  | double y[] = {0.14, 0.18, 0.22, 0.25, | 
|  | 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, | 
|  | 0.73, 0.96, 1.34, 2.10, 4.39}; | 
|  |  | 
|  | for (int i = 1; i <=15; ++i) { | 
|  | const double u = i; | 
|  | const double v = 16 - i; | 
|  | const double w = std::min(i, 16 - i); | 
|  | residual[i - 1] = y[i - 1] - (x1 + u / (v * x2 + w * x3)); | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem8::initial_x[] = {1.0, 1.0, 1.0}; | 
|  | const double TestProblem8::lower_bounds[] = { | 
|  | -kDoubleMax, -kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem8::upper_bounds[] = { | 
|  | kDoubleMax, kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem8::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem8::unconstrained_optimal_cost = 8.21487e-3; | 
|  |  | 
|  | // Gaussian function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem9, 3, 15) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  |  | 
|  | const double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521, | 
|  | 0.3989, | 
|  | 0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009}; | 
|  | for (int i = 0; i < 15; ++i) { | 
|  | const double t_i = (8.0 - i - 1.0) / 2.0; | 
|  | residual[i] = x1 * exp(-x2 * (t_i - x3) * (t_i - x3) / 2.0) - y[i]; | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0}; | 
|  | const double TestProblem9::lower_bounds[] = {0.398, 1.0, -0.5}; | 
|  | const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1}; | 
|  | const double TestProblem9::constrained_optimal_cost = 0.11279300e-7; | 
|  | const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7; | 
|  |  | 
|  | // Meyer function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem10, 3, 16) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  |  | 
|  | const double y[] = {34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744, | 
|  | 8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872}; | 
|  |  | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | const double ti = 45.0 + 5.0 * (i + 1); | 
|  | residual[i] = x1 * exp(x2 / (ti + x3)) - y[i]; | 
|  | } | 
|  | END_MGH_PROBLEM | 
|  |  | 
|  | const double TestProblem10::initial_x[] = {0.02, 4000, 250}; | 
|  | const double TestProblem10::lower_bounds[] = { | 
|  | -kDoubleMax, -kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem10::upper_bounds[] = { | 
|  | kDoubleMax, kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem10::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem10::unconstrained_optimal_cost = 87.9458; | 
|  |  | 
|  | // Gulf research and development function | 
|  | BEGIN_MGH_PROBLEM(TestProblem11, 3, 100) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | for (int i = 1; i <= 100; ++i) { | 
|  | const double ti = i / 100.0; | 
|  | const double yi = 25.0 + pow(-50.0 * log(ti), 2.0 / 3.0); | 
|  | residual[i - 1] = exp(-pow(abs((yi * 100.0 * i) * x2), x3) / x1) - ti; | 
|  | } | 
|  | END_MGH_PROBLEM | 
|  |  | 
|  | const double TestProblem11::initial_x[] = {5.0, 2.5, 0.15}; | 
|  | const double TestProblem11::lower_bounds[] = {1e-16, 0.0, 0.0}; | 
|  | const double TestProblem11::upper_bounds[] = {10.0, 10.0, 10.0}; | 
|  | const double TestProblem11::constrained_optimal_cost = 0.58281431e-4; | 
|  | const double TestProblem11::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Box three-dimensional function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem12, 3, 3) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  |  | 
|  | const double t1 = 0.1; | 
|  | const double t2 = 0.2; | 
|  | const double t3 = 0.3; | 
|  |  | 
|  | residual[0] = exp(-t1 * x1) - exp(-t1 * x2) - x3 * (exp(-t1) - exp(-10.0 * t1)); | 
|  | residual[1] = exp(-t2 * x1) - exp(-t2 * x2) - x3 * (exp(-t2) - exp(-10.0 * t2)); | 
|  | residual[2] = exp(-t3 * x1) - exp(-t3 * x2) - x3 * (exp(-t3) - exp(-10.0 * t3)); | 
|  | END_MGH_PROBLEM | 
|  |  | 
|  | const double TestProblem12::initial_x[] = {0.0, 10.0, 20.0}; | 
|  | const double TestProblem12::lower_bounds[] = {0.0, 5.0, 0.0}; | 
|  | const double TestProblem12::upper_bounds[] = {2.0, 9.5, 20.0}; | 
|  | const double TestProblem12::constrained_optimal_cost = 0.30998153e-5; | 
|  | const double TestProblem12::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Powell Singular function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem13, 4, 4) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | const T x4 = x[3]; | 
|  |  | 
|  | residual[0] = x1 + 10.0 * x2; | 
|  | residual[1] = sqrt(5.0) * (x3 - x4); | 
|  | residual[2] = (x2 - 2.0 * x3) * (x2 - 2.0 * x3); | 
|  | residual[3] = sqrt(10.0) * (x1 - x4) * (x1 - x4); | 
|  | END_MGH_PROBLEM | 
|  |  | 
|  | const double TestProblem13::initial_x[] = {3.0, -1.0, 0.0, 1.0}; | 
|  | const double TestProblem13::lower_bounds[] = { | 
|  | -kDoubleMax, -kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem13::upper_bounds[] = { | 
|  | kDoubleMax, kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem13::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem13::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Wood function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem14, 4, 6) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | const T x4 = x[3]; | 
|  |  | 
|  | residual[0] = 10.0 * (x2 - x1 * x1); | 
|  | residual[1] = 1.0 - x1; | 
|  | residual[2] = sqrt(90.0) * (x4 - x3 * x3); | 
|  | residual[3] = 1.0 - x3; | 
|  | residual[4] = sqrt(10.0) * (x2 + x4 - 2.0); | 
|  | residual[5] = 1.0 / sqrt(10.0) * (x2 - x4); | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem14::initial_x[] = {-3.0, -1.0, -3.0, -1.0}; | 
|  | const double TestProblem14::lower_bounds[] = {-100.0, -100.0, -100.0, -100.0}; | 
|  | const double TestProblem14::upper_bounds[] = {0.0, 10.0, 100.0, 100.0}; | 
|  | const double TestProblem14::constrained_optimal_cost = 0.15567008e1; | 
|  | const double TestProblem14::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Kowalik and Osborne function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem15, 4, 11) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | const T x4 = x[3]; | 
|  |  | 
|  | const double y[] = {0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, | 
|  | 0.0456, 0.0342, 0.0323, 0.0235, 0.0246}; | 
|  | const double u[] = {4.0, 2.0, 1.0, 0.5, 0.25, 0.167, 0.125, 0.1, | 
|  | 0.0833, 0.0714, 0.0625}; | 
|  |  | 
|  | for (int i = 0; i < 11; ++i) { | 
|  | residual[i]  = y[i] - x1 * (u[i] * u[i] + u[i] * x2) / | 
|  | (u[i] * u[i]  + u[i] * x3 + x4); | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem15::initial_x[] = {0.25, 0.39, 0.415, 0.39}; | 
|  | const double TestProblem15::lower_bounds[] = { | 
|  | -kDoubleMax, -kDoubleMax, -kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem15::upper_bounds[] = { | 
|  | kDoubleMax, kDoubleMax, kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem15::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem15::unconstrained_optimal_cost = 3.07505e-4; | 
|  |  | 
|  | // Brown and Dennis function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem16, 4, 20) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | const T x4 = x[3]; | 
|  |  | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | const double ti = (i + 1) / 5.0; | 
|  | residual[i] = (x1 + ti * x2 - exp(ti)) * (x1 + ti * x2 - exp(ti)) + | 
|  | (x3 + x4 * sin(ti) - cos(ti)) * (x3 + x4 * sin(ti) - cos(ti)); | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem16::initial_x[] = {25.0, 5.0, -5.0, -1.0}; | 
|  | const double TestProblem16::lower_bounds[] = {-10.0, 0.0, -100.0, -20.0}; | 
|  | const double TestProblem16::upper_bounds[] = {100.0, 15.0, 0.0, 0.2}; | 
|  | const double TestProblem16::constrained_optimal_cost = 0.88860479e5; | 
|  | const double TestProblem16::unconstrained_optimal_cost = 85822.2; | 
|  |  | 
|  | // Osborne 1 function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem17, 5, 33) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | const T x4 = x[3]; | 
|  | const T x5 = x[4]; | 
|  |  | 
|  | const double y[] = {0.844, 0.908, 0.932, 0.936, 0.925, 0.908, 0.881, 0.850, 0.818, | 
|  | 0.784, 0.751, 0.718, 0.685, 0.658, 0.628, 0.603, 0.580, 0.558, | 
|  | 0.538, 0.522, 0.506, 0.490, 0.478, 0.467, 0.457, 0.448, 0.438, | 
|  | 0.431, 0.424, 0.420, 0.414, 0.411, 0.406}; | 
|  |  | 
|  | for (int i = 0; i < 33; ++i) { | 
|  | const double ti = 10.0 * i; | 
|  | residual[i] = y[i] - (x1 + x2 * exp(-ti * x4) + x3 * exp(-ti * x5)); | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem17::initial_x[] = {0.5, 1.5, -1.0, 0.01, 0.02}; | 
|  | const double TestProblem17::lower_bounds[] = { | 
|  | -kDoubleMax, -kDoubleMax, -kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem17::upper_bounds[] = { | 
|  | kDoubleMax, kDoubleMax, kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem17::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem17::unconstrained_optimal_cost = 5.46489e-5; | 
|  |  | 
|  | // Biggs EXP6 function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem18, 6, 13) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | const T x4 = x[3]; | 
|  | const T x5 = x[4]; | 
|  | const T x6 = x[5]; | 
|  |  | 
|  | for (int i = 0; i < 13; ++i) { | 
|  | const double ti = 0.1 * (i + 1.0); | 
|  | const double yi = exp(-ti) - 5.0 * exp(-10.0 * ti) + 3.0 * exp(-4.0 * ti); | 
|  | residual[i] = | 
|  | x3 * exp(-ti * x1) - x4 * exp(-ti * x2) + x6 * exp(-ti * x5) - yi; | 
|  | } | 
|  | END_MGH_PROBLEM | 
|  |  | 
|  | const double TestProblem18::initial_x[] = {1.0, 2.0, 1.0, 1.0, 1.0, 1.0}; | 
|  | const double TestProblem18::lower_bounds[] = {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}; | 
|  | const double TestProblem18::upper_bounds[] = {2.0, 8.0, 1.0, 7.0, 5.0, 5.0}; | 
|  | const double TestProblem18::constrained_optimal_cost = 0.53209865e-3; | 
|  | const double TestProblem18::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Osborne 2 function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem19, 11, 65) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | const T x4 = x[3]; | 
|  | const T x5 = x[4]; | 
|  | const T x6 = x[5]; | 
|  | const T x7 = x[6]; | 
|  | const T x8 = x[7]; | 
|  | const T x9 = x[8]; | 
|  | const T x10 = x[9]; | 
|  | const T x11 = x[10]; | 
|  |  | 
|  | const double y[] = {1.366, 1.191, 1.112, 1.013, 0.991, | 
|  | 0.885, 0.831, 0.847, 0.786, 0.725, | 
|  | 0.746, 0.679, 0.608, 0.655, 0.616, | 
|  | 0.606, 0.602, 0.626, 0.651, 0.724, | 
|  | 0.649, 0.649, 0.694, 0.644, 0.624, | 
|  | 0.661, 0.612, 0.558, 0.533, 0.495, | 
|  | 0.500, 0.423, 0.395, 0.375, 0.372, | 
|  | 0.391, 0.396, 0.405, 0.428, 0.429, | 
|  | 0.523, 0.562, 0.607, 0.653, 0.672, | 
|  | 0.708, 0.633, 0.668, 0.645, 0.632, | 
|  | 0.591, 0.559, 0.597, 0.625, 0.739, | 
|  | 0.710, 0.729, 0.720, 0.636, 0.581, | 
|  | 0.428, 0.292, 0.162, 0.098, 0.054}; | 
|  |  | 
|  | for (int i = 0; i < 65; ++i) { | 
|  | const double ti = i / 10.0; | 
|  | residual[i] = y[i] - (x1 * exp(-(ti * x5)) + | 
|  | x2 * exp(-(ti - x9)  * (ti - x9)  * x6) + | 
|  | x3 * exp(-(ti - x10) * (ti - x10) * x7) + | 
|  | x4 * exp(-(ti - x11) * (ti - x11) * x8)); | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem19::initial_x[] = {1.3, 0.65, 0.65, 0.7, 0.6, | 
|  | 3.0, 5.0, 7.0, 2.0, 4.5, 5.5}; | 
|  | const double TestProblem19::lower_bounds[] = { | 
|  | -kDoubleMax, -kDoubleMax, -kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem19::upper_bounds[] = { | 
|  | kDoubleMax, kDoubleMax, kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem19::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem19::unconstrained_optimal_cost = 4.01377e-2; | 
|  |  | 
|  |  | 
|  | #undef BEGIN_MGH_PROBLEM | 
|  | #undef END_MGH_PROBLEM | 
|  |  | 
|  | // clang-format on | 
|  |  | 
|  | template <typename TestProblem> | 
|  | bool Solve(bool is_constrained, int trial) { | 
|  | double x[TestProblem::kNumParameters]; | 
|  | for (int i = 0; i < TestProblem::kNumParameters; ++i) { | 
|  | x[i] = pow(10, trial) * TestProblem::initial_x[i]; | 
|  | } | 
|  |  | 
|  | Problem problem; | 
|  | problem.AddResidualBlock(TestProblem::Create(), nullptr, x); | 
|  | double optimal_cost = TestProblem::unconstrained_optimal_cost; | 
|  |  | 
|  | if (is_constrained) { | 
|  | for (int i = 0; i < TestProblem::kNumParameters; ++i) { | 
|  | problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]); | 
|  | problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]); | 
|  | } | 
|  | optimal_cost = TestProblem::constrained_optimal_cost; | 
|  | } | 
|  |  | 
|  | Solver::Options options; | 
|  | options.parameter_tolerance = 1e-18; | 
|  | options.function_tolerance = 1e-18; | 
|  | options.gradient_tolerance = 1e-18; | 
|  | options.max_num_iterations = 1000; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  |  | 
|  | const double kMinLogRelativeError = 4.0; | 
|  | const double log_relative_error = | 
|  | -std::log10(std::abs(2.0 * summary.final_cost - optimal_cost) / | 
|  | (optimal_cost > 0.0 ? optimal_cost : 1.0)); | 
|  |  | 
|  | const bool success = log_relative_error >= kMinLogRelativeError; | 
|  | LOG(INFO) << "Expected : " << optimal_cost | 
|  | << " actual: " << 2.0 * summary.final_cost << " " << success | 
|  | << " in " << summary.total_time_in_seconds << " seconds"; | 
|  | return success; | 
|  | } | 
|  |  | 
|  | }  // namespace examples | 
|  | }  // namespace ceres | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); | 
|  | google::InitGoogleLogging(argv[0]); | 
|  |  | 
|  | using ceres::examples::Solve; | 
|  |  | 
|  | int unconstrained_problems = 0; | 
|  | int unconstrained_successes = 0; | 
|  | int constrained_problems = 0; | 
|  | int constrained_successes = 0; | 
|  | std::stringstream ss; | 
|  |  | 
|  | #define UNCONSTRAINED_SOLVE(n)                              \ | 
|  | ss << "Unconstrained Problem " << n << " : ";             \ | 
|  | if (CERES_GET_FLAG(FLAGS_problem) == #n ||                \ | 
|  | CERES_GET_FLAG(FLAGS_problem) == "all") {             \ | 
|  | unconstrained_problems += 3;                            \ | 
|  | if (Solve<ceres::examples::TestProblem##n>(false, 0)) { \ | 
|  | unconstrained_successes += 1;                         \ | 
|  | ss << "Yes ";                                         \ | 
|  | } else {                                                \ | 
|  | ss << "No  ";                                         \ | 
|  | }                                                       \ | 
|  | if (Solve<ceres::examples::TestProblem##n>(false, 1)) { \ | 
|  | unconstrained_successes += 1;                         \ | 
|  | ss << "Yes ";                                         \ | 
|  | } else {                                                \ | 
|  | ss << "No  ";                                         \ | 
|  | }                                                       \ | 
|  | if (Solve<ceres::examples::TestProblem##n>(false, 2)) { \ | 
|  | unconstrained_successes += 1;                         \ | 
|  | ss << "Yes ";                                         \ | 
|  | } else {                                                \ | 
|  | ss << "No  ";                                         \ | 
|  | }                                                       \ | 
|  | }                                                         \ | 
|  | ss << std::endl; | 
|  |  | 
|  | UNCONSTRAINED_SOLVE(1); | 
|  | UNCONSTRAINED_SOLVE(2); | 
|  | UNCONSTRAINED_SOLVE(3); | 
|  | UNCONSTRAINED_SOLVE(4); | 
|  | UNCONSTRAINED_SOLVE(5); | 
|  | UNCONSTRAINED_SOLVE(6); | 
|  | UNCONSTRAINED_SOLVE(7); | 
|  | UNCONSTRAINED_SOLVE(8); | 
|  | UNCONSTRAINED_SOLVE(9); | 
|  | UNCONSTRAINED_SOLVE(10); | 
|  | UNCONSTRAINED_SOLVE(11); | 
|  | UNCONSTRAINED_SOLVE(12); | 
|  | UNCONSTRAINED_SOLVE(13); | 
|  | UNCONSTRAINED_SOLVE(14); | 
|  | UNCONSTRAINED_SOLVE(15); | 
|  | UNCONSTRAINED_SOLVE(16); | 
|  | UNCONSTRAINED_SOLVE(17); | 
|  | UNCONSTRAINED_SOLVE(18); | 
|  | UNCONSTRAINED_SOLVE(19); | 
|  |  | 
|  | ss << "Unconstrained : " << unconstrained_successes << "/" | 
|  | << unconstrained_problems << std::endl; | 
|  |  | 
|  | #define CONSTRAINED_SOLVE(n)                               \ | 
|  | ss << "Constrained Problem " << n << " : ";              \ | 
|  | if (CERES_GET_FLAG(FLAGS_problem) == #n ||               \ | 
|  | CERES_GET_FLAG(FLAGS_problem) == "all") {            \ | 
|  | constrained_problems += 1;                             \ | 
|  | if (Solve<ceres::examples::TestProblem##n>(true, 0)) { \ | 
|  | constrained_successes += 1;                          \ | 
|  | ss << "Yes ";                                        \ | 
|  | } else {                                               \ | 
|  | ss << "No  ";                                        \ | 
|  | }                                                      \ | 
|  | }                                                        \ | 
|  | ss << std::endl; | 
|  |  | 
|  | CONSTRAINED_SOLVE(3); | 
|  | CONSTRAINED_SOLVE(4); | 
|  | CONSTRAINED_SOLVE(5); | 
|  | CONSTRAINED_SOLVE(7); | 
|  | CONSTRAINED_SOLVE(9); | 
|  | CONSTRAINED_SOLVE(11); | 
|  | CONSTRAINED_SOLVE(12); | 
|  | CONSTRAINED_SOLVE(14); | 
|  | CONSTRAINED_SOLVE(16); | 
|  | CONSTRAINED_SOLVE(18); | 
|  | ss << "Constrained : " << constrained_successes << "/" << constrained_problems | 
|  | << std::endl; | 
|  |  | 
|  | std::cout << ss.str(); | 
|  | return 0; | 
|  | } |