|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: joydeepb@ri.cmu.edu (Joydeep Biswas) | 
|  | // | 
|  | // This example demonstrates how to use the DynamicAutoDiffCostFunction | 
|  | // variant of CostFunction. The DynamicAutoDiffCostFunction is meant to | 
|  | // be used in cases where the number of parameter blocks or the sizes are not | 
|  | // known at compile time. | 
|  | // | 
|  | // This example simulates a robot traversing down a 1-dimension hallway with | 
|  | // noise odometry readings and noisy range readings of the end of the hallway. | 
|  | // By fusing the noisy odometry and sensor readings this example demonstrates | 
|  | // how to compute the maximum likelihood estimate (MLE) of the robot's pose at | 
|  | // each timestep. | 
|  | // | 
|  | // The robot starts at the origin, and it is travels to the end of a corridor of | 
|  | // fixed length specified by the "--corridor_length" flag. It executes a series | 
|  | // of motion commands to move forward a fixed length, specified by the | 
|  | // "--pose_separation" flag, at which pose it receives relative odometry | 
|  | // measurements as well as a range reading of the distance to the end of the | 
|  | // hallway. The odometry readings are drawn with Gaussian noise and standard | 
|  | // deviation specified by the "--odometry_stddev" flag, and the range readings | 
|  | // similarly with standard deviation specified by the "--range-stddev" flag. | 
|  | // | 
|  | // There are two types of residuals in this problem: | 
|  | // 1) The OdometryConstraint residual, that accounts for the odometry readings | 
|  | //    between successive pose estimatess of the robot. | 
|  | // 2) The RangeConstraint residual, that accounts for the errors in the observed | 
|  | //    range readings from each pose. | 
|  | // | 
|  | // The OdometryConstraint residual is modeled as an AutoDiffCostFunction with | 
|  | // a fixed parameter block size of 1, which is the relative odometry being | 
|  | // solved for, between a pair of successive poses of the robot. Differences | 
|  | // between observed and computed relative odometry values are penalized weighted | 
|  | // by the known standard deviation of the odometry readings. | 
|  | // | 
|  | // The RangeConstraint residual is modeled as a DynamicAutoDiffCostFunction | 
|  | // which sums up the relative odometry estimates to compute the estimated | 
|  | // global pose of the robot, and then computes the expected range reading. | 
|  | // Differences between the observed and expected range readings are then | 
|  | // penalized weighted by the standard deviation of readings of the sensor. | 
|  | // Since the number of poses of the robot is not known at compile time, this | 
|  | // cost function is implemented as a DynamicAutoDiffCostFunction. | 
|  | // | 
|  | // The outputs of the example are the initial values of the odometry and range | 
|  | // readings, and the range and odometry errors for every pose of the robot. | 
|  | // After computing the MLE, the computed poses and corrected odometry values | 
|  | // are printed out, along with the corresponding range and odometry errors. Note | 
|  | // that as an MLE of a noisy system the errors will not be reduced to zero, but | 
|  | // the odometry estimates will be updated to maximize the joint likelihood of | 
|  | // all odometry and range readings of the robot. | 
|  | // | 
|  | // Mathematical Formulation | 
|  | // ====================================================== | 
|  | // | 
|  | // Let p_0, .., p_N be (N+1) robot poses, where the robot moves down the | 
|  | // corridor starting from p_0 and ending at p_N. We assume that p_0 is the | 
|  | // origin of the coordinate system. | 
|  | // Odometry u_i is the observed relative odometry between pose p_(i-1) and p_i, | 
|  | // and range reading y_i is the range reading of the end of the corridor from | 
|  | // pose p_i. Both odometry as well as range readings are noisy, but we wish to | 
|  | // compute the maximum likelihood estimate (MLE) of corrected odometry values | 
|  | // u*_0 to u*_(N-1), such that the Belief is optimized: | 
|  | // | 
|  | // Belief(u*_(0:N-1) | u_(0:N-1), y_(0:N-1))                                  1. | 
|  | //   =        P(u*_(0:N-1) | u_(0:N-1), y_(0:N-1))                            2. | 
|  | //   \propto  P(y_(0:N-1) | u*_(0:N-1), u_(0:N-1)) P(u*_(0:N-1) | u_(0:N-1))  3. | 
|  | //   =       \prod_i{ P(y_i | u*_(0:i)) P(u*_i | u_i) }                       4. | 
|  | // | 
|  | // Here, the subscript "(0:i)" is used as shorthand to indicate entries from all | 
|  | // timesteps 0 to i for that variable, both inclusive. | 
|  | // | 
|  | // Bayes' rule is used to derive eq. 3 from 2, and the independence of | 
|  | // odometry observations and range readings is expolited to derive 4 from 3. | 
|  | // | 
|  | // Thus, the Belief, up to scale, is factored as a product of a number of | 
|  | // terms, two for each pose, where for each pose term there is one term for the | 
|  | // range reading, P(y_i | u*_(0:i) and one term for the odometry reading, | 
|  | // P(u*_i | u_i) . Note that the term for the range reading is dependent on all | 
|  | // odometry values u*_(0:i), while the odometry term, P(u*_i | u_i) depends only | 
|  | // on a single value, u_i. Both the range reading as well as odoemtry | 
|  | // probability terms are modeled as the Normal distribution, and have the form: | 
|  | // | 
|  | // p(x) \propto \exp{-((x - x_mean) / x_stddev)^2} | 
|  | // | 
|  | // where x refers to either the MLE odometry u* or range reading y, and x_mean | 
|  | // is the corresponding mean value, u for the odometry terms, and y_expected, | 
|  | // the expected range reading based on all the previous odometry terms. | 
|  | // The MLE is thus found by finding those values x* which minimize: | 
|  | // | 
|  | // x* = \arg\min{((x - x_mean) / x_stddev)^2} | 
|  | // | 
|  | // which is in the nonlinear least-square form, suited to being solved by Ceres. | 
|  | // The non-linear component arise from the computation of x_mean. The residuals | 
|  | // ((x - x_mean) / x_stddev) for the residuals that Ceres will optimize. As | 
|  | // mentioned earlier, the odometry term for each pose depends only on one | 
|  | // variable, and will be computed by an AutoDiffCostFunction, while the term | 
|  | // for the range reading will depend on all previous odometry observations, and | 
|  | // will be computed by a DynamicAutoDiffCostFunction since the number of | 
|  | // odoemtry observations will only be known at run time. | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstdio> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/ceres.h" | 
|  | #include "ceres/dynamic_autodiff_cost_function.h" | 
|  | #include "gflags/gflags.h" | 
|  | #include "glog/logging.h" | 
|  | #include "random.h" | 
|  |  | 
|  | using ceres::AutoDiffCostFunction; | 
|  | using ceres::CauchyLoss; | 
|  | using ceres::CostFunction; | 
|  | using ceres::DynamicAutoDiffCostFunction; | 
|  | using ceres::LossFunction; | 
|  | using ceres::Problem; | 
|  | using ceres::Solve; | 
|  | using ceres::Solver; | 
|  | using ceres::examples::RandNormal; | 
|  | using std::min; | 
|  | using std::vector; | 
|  |  | 
|  | DEFINE_double(corridor_length, | 
|  | 30.0, | 
|  | "Length of the corridor that the robot is travelling down."); | 
|  |  | 
|  | DEFINE_double(pose_separation, | 
|  | 0.5, | 
|  | "The distance that the robot traverses between successive " | 
|  | "odometry updates."); | 
|  |  | 
|  | DEFINE_double(odometry_stddev, | 
|  | 0.1, | 
|  | "The standard deviation of odometry error of the robot."); | 
|  |  | 
|  | DEFINE_double(range_stddev, | 
|  | 0.01, | 
|  | "The standard deviation of range readings of the robot."); | 
|  |  | 
|  | // The stride length of the dynamic_autodiff_cost_function evaluator. | 
|  | static constexpr int kStride = 10; | 
|  |  | 
|  | struct OdometryConstraint { | 
|  | using OdometryCostFunction = AutoDiffCostFunction<OdometryConstraint, 1, 1>; | 
|  |  | 
|  | OdometryConstraint(double odometry_mean, double odometry_stddev) | 
|  | : odometry_mean(odometry_mean), odometry_stddev(odometry_stddev) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* const odometry, T* residual) const { | 
|  | *residual = (*odometry - odometry_mean) / odometry_stddev; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static OdometryCostFunction* Create(const double odometry_value) { | 
|  | return new OdometryCostFunction(new OdometryConstraint( | 
|  | odometry_value, CERES_GET_FLAG(FLAGS_odometry_stddev))); | 
|  | } | 
|  |  | 
|  | const double odometry_mean; | 
|  | const double odometry_stddev; | 
|  | }; | 
|  |  | 
|  | struct RangeConstraint { | 
|  | using RangeCostFunction = | 
|  | DynamicAutoDiffCostFunction<RangeConstraint, kStride>; | 
|  |  | 
|  | RangeConstraint(int pose_index, | 
|  | double range_reading, | 
|  | double range_stddev, | 
|  | double corridor_length) | 
|  | : pose_index(pose_index), | 
|  | range_reading(range_reading), | 
|  | range_stddev(range_stddev), | 
|  | corridor_length(corridor_length) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(T const* const* relative_poses, T* residuals) const { | 
|  | T global_pose(0); | 
|  | for (int i = 0; i <= pose_index; ++i) { | 
|  | global_pose += relative_poses[i][0]; | 
|  | } | 
|  | residuals[0] = | 
|  | (global_pose + range_reading - corridor_length) / range_stddev; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Factory method to create a CostFunction from a RangeConstraint to | 
|  | // conveniently add to a ceres problem. | 
|  | static RangeCostFunction* Create(const int pose_index, | 
|  | const double range_reading, | 
|  | vector<double>* odometry_values, | 
|  | vector<double*>* parameter_blocks) { | 
|  | auto* constraint = | 
|  | new RangeConstraint(pose_index, | 
|  | range_reading, | 
|  | CERES_GET_FLAG(FLAGS_range_stddev), | 
|  | CERES_GET_FLAG(FLAGS_corridor_length)); | 
|  | auto* cost_function = new RangeCostFunction(constraint); | 
|  | // Add all the parameter blocks that affect this constraint. | 
|  | parameter_blocks->clear(); | 
|  | for (int i = 0; i <= pose_index; ++i) { | 
|  | parameter_blocks->push_back(&((*odometry_values)[i])); | 
|  | cost_function->AddParameterBlock(1); | 
|  | } | 
|  | cost_function->SetNumResiduals(1); | 
|  | return (cost_function); | 
|  | } | 
|  |  | 
|  | const int pose_index; | 
|  | const double range_reading; | 
|  | const double range_stddev; | 
|  | const double corridor_length; | 
|  | }; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | void SimulateRobot(vector<double>* odometry_values, | 
|  | vector<double>* range_readings) { | 
|  | const int num_steps = | 
|  | static_cast<int>(ceil(CERES_GET_FLAG(FLAGS_corridor_length) / | 
|  | CERES_GET_FLAG(FLAGS_pose_separation))); | 
|  |  | 
|  | // The robot starts out at the origin. | 
|  | double robot_location = 0.0; | 
|  | for (int i = 0; i < num_steps; ++i) { | 
|  | const double actual_odometry_value = | 
|  | min(CERES_GET_FLAG(FLAGS_pose_separation), | 
|  | CERES_GET_FLAG(FLAGS_corridor_length) - robot_location); | 
|  | robot_location += actual_odometry_value; | 
|  | const double actual_range = | 
|  | CERES_GET_FLAG(FLAGS_corridor_length) - robot_location; | 
|  | const double observed_odometry = | 
|  | RandNormal() * CERES_GET_FLAG(FLAGS_odometry_stddev) + | 
|  | actual_odometry_value; | 
|  | const double observed_range = | 
|  | RandNormal() * CERES_GET_FLAG(FLAGS_range_stddev) + actual_range; | 
|  | odometry_values->push_back(observed_odometry); | 
|  | range_readings->push_back(observed_range); | 
|  | } | 
|  | } | 
|  |  | 
|  | void PrintState(const vector<double>& odometry_readings, | 
|  | const vector<double>& range_readings) { | 
|  | CHECK_EQ(odometry_readings.size(), range_readings.size()); | 
|  | double robot_location = 0.0; | 
|  | printf("pose: location     odom    range  r.error  o.error\n"); | 
|  | for (int i = 0; i < odometry_readings.size(); ++i) { | 
|  | robot_location += odometry_readings[i]; | 
|  | const double range_error = robot_location + range_readings[i] - | 
|  | CERES_GET_FLAG(FLAGS_corridor_length); | 
|  | const double odometry_error = | 
|  | CERES_GET_FLAG(FLAGS_pose_separation) - odometry_readings[i]; | 
|  | printf("%4d: %8.3f %8.3f %8.3f %8.3f %8.3f\n", | 
|  | static_cast<int>(i), | 
|  | robot_location, | 
|  | odometry_readings[i], | 
|  | range_readings[i], | 
|  | range_error, | 
|  | odometry_error); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | google::InitGoogleLogging(argv[0]); | 
|  | GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); | 
|  | // Make sure that the arguments parsed are all positive. | 
|  | CHECK_GT(CERES_GET_FLAG(FLAGS_corridor_length), 0.0); | 
|  | CHECK_GT(CERES_GET_FLAG(FLAGS_pose_separation), 0.0); | 
|  | CHECK_GT(CERES_GET_FLAG(FLAGS_odometry_stddev), 0.0); | 
|  | CHECK_GT(CERES_GET_FLAG(FLAGS_range_stddev), 0.0); | 
|  |  | 
|  | vector<double> odometry_values; | 
|  | vector<double> range_readings; | 
|  | SimulateRobot(&odometry_values, &range_readings); | 
|  |  | 
|  | printf("Initial values:\n"); | 
|  | PrintState(odometry_values, range_readings); | 
|  | ceres::Problem problem; | 
|  |  | 
|  | for (int i = 0; i < odometry_values.size(); ++i) { | 
|  | // Create and add a DynamicAutoDiffCostFunction for the RangeConstraint from | 
|  | // pose i. | 
|  | vector<double*> parameter_blocks; | 
|  | RangeConstraint::RangeCostFunction* range_cost_function = | 
|  | RangeConstraint::Create( | 
|  | i, range_readings[i], &odometry_values, ¶meter_blocks); | 
|  | problem.AddResidualBlock(range_cost_function, nullptr, parameter_blocks); | 
|  |  | 
|  | // Create and add an AutoDiffCostFunction for the OdometryConstraint for | 
|  | // pose i. | 
|  | problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]), | 
|  | nullptr, | 
|  | &(odometry_values[i])); | 
|  | } | 
|  |  | 
|  | ceres::Solver::Options solver_options; | 
|  | solver_options.minimizer_progress_to_stdout = true; | 
|  |  | 
|  | Solver::Summary summary; | 
|  | printf("Solving...\n"); | 
|  | Solve(solver_options, &problem, &summary); | 
|  | printf("Done.\n"); | 
|  | std::cout << summary.FullReport() << "\n"; | 
|  | printf("Final values:\n"); | 
|  | PrintState(odometry_values, range_readings); | 
|  | return 0; | 
|  | } |