|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_PUBLIC_AUTODIFF_MANIFOLD_H_ | 
|  | #define CERES_PUBLIC_AUTODIFF_MANIFOLD_H_ | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #include "ceres/internal/autodiff.h" | 
|  | #include "ceres/manifold.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | // Create a Manifold with Jacobians computed via automatic differentiation. For | 
|  | // more information on manifolds, see include/ceres/manifold.h | 
|  | // | 
|  | // To get an auto differentiated manifold, you must define a class/struct with | 
|  | // templated Plus and Minus functions that compute | 
|  | // | 
|  | //   x_plus_delta = Plus(x, delta); | 
|  | //   y_minus_x    = Minus(y, x); | 
|  | // | 
|  | // Where, x, y and x_plus_y are vectors on the manifold in the ambient space (so | 
|  | // they are kAmbientSize vectors) and delta, y_minus_x are vectors in the | 
|  | // tangent space (so they are kTangentSize vectors). | 
|  | // | 
|  | // The Functor should have the signature: | 
|  | // | 
|  | // struct Functor { | 
|  | //   template <typename T> | 
|  | //   bool Plus(const T* x, const T* delta, T* x_plus_delta) const; | 
|  | // | 
|  | //   template <typename T> | 
|  | //   bool Minus(const T* y, const T* x, T* y_minus_x) const; | 
|  | // }; | 
|  | // | 
|  | // Observe that the Plus and Minus operations are templated on the parameter T. | 
|  | // The autodiff framework substitutes appropriate "Jet" objects for T in order | 
|  | // to compute the derivative when necessary. This is the same mechanism that is | 
|  | // used to compute derivatives when using AutoDiffCostFunction. | 
|  | // | 
|  | // Plus and Minus should return true if the computation is successful and false | 
|  | // otherwise, in which case the result will not be used. | 
|  | // | 
|  | // Given this Functor, the corresponding Manifold can be constructed as: | 
|  | // | 
|  | // AutoDiffManifold<Functor, kAmbientSize, kTangentSize> manifold; | 
|  | // | 
|  | // As a concrete example consider the case of Quaternions. Quaternions form a | 
|  | // three dimensional manifold embedded in R^4, i.e. they have an ambient | 
|  | // dimension of 4 and their tangent space has dimension 3. The following Functor | 
|  | // (taken from autodiff_manifold_test.cc) defines the Plus and Minus operations | 
|  | // on the Quaternion manifold: | 
|  | // | 
|  | // NOTE: The following is only used for illustration purposes. Ceres Solver | 
|  | // ships with optimized production grade QuaternionManifold implementation. See | 
|  | // manifold.h. | 
|  | // | 
|  | // This functor assumes that the quaternions are laid out as [w,x,y,z] in | 
|  | // memory, i.e. the real or scalar part is the first coordinate. | 
|  | // | 
|  | // struct QuaternionFunctor { | 
|  | //   template <typename T> | 
|  | //   bool Plus(const T* x, const T* delta, T* x_plus_delta) const { | 
|  | //     const T squared_norm_delta = | 
|  | //         delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; | 
|  | // | 
|  | //     T q_delta[4]; | 
|  | //     if (squared_norm_delta > T(0.0)) { | 
|  | //       T norm_delta = sqrt(squared_norm_delta); | 
|  | //       const T sin_delta_by_delta = sin(norm_delta) / norm_delta; | 
|  | //       q_delta[0] = cos(norm_delta); | 
|  | //       q_delta[1] = sin_delta_by_delta * delta[0]; | 
|  | //       q_delta[2] = sin_delta_by_delta * delta[1]; | 
|  | //       q_delta[3] = sin_delta_by_delta * delta[2]; | 
|  | //     } else { | 
|  | //       // We do not just use q_delta = [1,0,0,0] here because that is a | 
|  | //       // constant and when used for automatic differentiation will | 
|  | //       // lead to a zero derivative. Instead we take a first order | 
|  | //       // approximation and evaluate it at zero. | 
|  | //       q_delta[0] = T(1.0); | 
|  | //       q_delta[1] = delta[0]; | 
|  | //       q_delta[2] = delta[1]; | 
|  | //       q_delta[3] = delta[2]; | 
|  | //     } | 
|  | // | 
|  | //     QuaternionProduct(q_delta, x, x_plus_delta); | 
|  | //     return true; | 
|  | //   } | 
|  | // | 
|  | //   template <typename T> | 
|  | //   bool Minus(const T* y, const T* x, T* y_minus_x) const { | 
|  | //     T minus_x[4] = {x[0], -x[1], -x[2], -x[3]}; | 
|  | //     T ambient_y_minus_x[4]; | 
|  | //     QuaternionProduct(y, minus_x, ambient_y_minus_x); | 
|  | //     T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] + | 
|  | //                     ambient_y_minus_x[2] * ambient_y_minus_x[2] + | 
|  | //                     ambient_y_minus_x[3] * ambient_y_minus_x[3]); | 
|  | //     if (u_norm > 0.0) { | 
|  | //       T theta = atan2(u_norm, ambient_y_minus_x[0]); | 
|  | //       y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm; | 
|  | //       y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm; | 
|  | //       y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm; | 
|  | //     } else { | 
|  | //       // We do not use [0,0,0] here because even though the value part is | 
|  | //       // a constant, the derivative part is not. | 
|  | //       y_minus_x[0] = ambient_y_minus_x[1]; | 
|  | //       y_minus_x[1] = ambient_y_minus_x[2]; | 
|  | //       y_minus_x[2] = ambient_y_minus_x[3]; | 
|  | //     } | 
|  | //     return true; | 
|  | //   } | 
|  | // }; | 
|  | // | 
|  | // Then given this struct, the auto differentiated Quaternion Manifold can now | 
|  | // be constructed as | 
|  | // | 
|  | //   Manifold* manifold = new AutoDiffManifold<QuaternionFunctor, 4, 3>; | 
|  |  | 
|  | template <typename Functor, int kAmbientSize, int kTangentSize> | 
|  | class AutoDiffManifold final : public Manifold { | 
|  | public: | 
|  | AutoDiffManifold() : functor_(std::make_unique<Functor>()) {} | 
|  |  | 
|  | // Takes ownership of functor. | 
|  | explicit AutoDiffManifold(Functor* functor) : functor_(functor) {} | 
|  |  | 
|  | int AmbientSize() const override { return kAmbientSize; } | 
|  | int TangentSize() const override { return kTangentSize; } | 
|  |  | 
|  | bool Plus(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) const override { | 
|  | return functor_->Plus(x, delta, x_plus_delta); | 
|  | } | 
|  |  | 
|  | bool PlusJacobian(const double* x, double* jacobian) const override; | 
|  |  | 
|  | bool Minus(const double* y, | 
|  | const double* x, | 
|  | double* y_minus_x) const override { | 
|  | return functor_->Minus(y, x, y_minus_x); | 
|  | } | 
|  |  | 
|  | bool MinusJacobian(const double* x, double* jacobian) const override; | 
|  |  | 
|  | const Functor& functor() const { return *functor_; } | 
|  |  | 
|  | private: | 
|  | std::unique_ptr<Functor> functor_; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // The following two helper structs are needed to interface the Plus and Minus | 
|  | // methods of the ManifoldFunctor with the automatic differentiation which | 
|  | // expects a Functor with operator(). | 
|  | template <typename Functor> | 
|  | struct PlusWrapper { | 
|  | explicit PlusWrapper(const Functor& functor) : functor(functor) {} | 
|  | template <typename T> | 
|  | bool operator()(const T* x, const T* delta, T* x_plus_delta) const { | 
|  | return functor.Plus(x, delta, x_plus_delta); | 
|  | } | 
|  | const Functor& functor; | 
|  | }; | 
|  |  | 
|  | template <typename Functor> | 
|  | struct MinusWrapper { | 
|  | explicit MinusWrapper(const Functor& functor) : functor(functor) {} | 
|  | template <typename T> | 
|  | bool operator()(const T* y, const T* x, T* y_minus_x) const { | 
|  | return functor.Minus(y, x, y_minus_x); | 
|  | } | 
|  | const Functor& functor; | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | template <typename Functor, int kAmbientSize, int kTangentSize> | 
|  | bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::PlusJacobian( | 
|  | const double* x, double* jacobian) const { | 
|  | double zero_delta[kTangentSize]; | 
|  | for (int i = 0; i < kTangentSize; ++i) { | 
|  | zero_delta[i] = 0.0; | 
|  | } | 
|  |  | 
|  | double x_plus_delta[kAmbientSize]; | 
|  | for (int i = 0; i < kAmbientSize; ++i) { | 
|  | x_plus_delta[i] = 0.0; | 
|  | } | 
|  |  | 
|  | const double* parameter_ptrs[2] = {x, zero_delta}; | 
|  |  | 
|  | // PlusJacobian is D_2 Plus(x,0) so we only need to compute the Jacobian | 
|  | // w.r.t. the second argument. | 
|  | double* jacobian_ptrs[2] = {nullptr, jacobian}; | 
|  | return internal::AutoDifferentiate< | 
|  | kAmbientSize, | 
|  | internal::StaticParameterDims<kAmbientSize, kTangentSize>>( | 
|  | internal::PlusWrapper<Functor>(*functor_), | 
|  | parameter_ptrs, | 
|  | kAmbientSize, | 
|  | x_plus_delta, | 
|  | jacobian_ptrs); | 
|  | } | 
|  |  | 
|  | template <typename Functor, int kAmbientSize, int kTangentSize> | 
|  | bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::MinusJacobian( | 
|  | const double* x, double* jacobian) const { | 
|  | double y_minus_x[kTangentSize]; | 
|  | for (int i = 0; i < kTangentSize; ++i) { | 
|  | y_minus_x[i] = 0.0; | 
|  | } | 
|  |  | 
|  | const double* parameter_ptrs[2] = {x, x}; | 
|  |  | 
|  | // MinusJacobian is D_1 Minus(x,x), so we only need to compute the Jacobian | 
|  | // w.r.t. the first argument. | 
|  | double* jacobian_ptrs[2] = {jacobian, nullptr}; | 
|  | return internal::AutoDifferentiate< | 
|  | kTangentSize, | 
|  | internal::StaticParameterDims<kAmbientSize, kAmbientSize>>( | 
|  | internal::MinusWrapper<Functor>(*functor_), | 
|  | parameter_ptrs, | 
|  | kTangentSize, | 
|  | y_minus_x, | 
|  | jacobian_ptrs); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_AUTODIFF_MANIFOLD_H_ |