| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #ifndef CERES_PUBLIC_AUTODIFF_MANIFOLD_H_ | 
 | #define CERES_PUBLIC_AUTODIFF_MANIFOLD_H_ | 
 |  | 
 | #include <memory> | 
 |  | 
 | #include "ceres/internal/autodiff.h" | 
 | #include "ceres/manifold.h" | 
 |  | 
 | namespace ceres { | 
 |  | 
 | // Create a Manifold with Jacobians computed via automatic differentiation. For | 
 | // more information on manifolds, see include/ceres/manifold.h | 
 | // | 
 | // To get an auto differentiated manifold, you must define a class/struct with | 
 | // templated Plus and Minus functions that compute | 
 | // | 
 | //   x_plus_delta = Plus(x, delta); | 
 | //   y_minus_x    = Minus(y, x); | 
 | // | 
 | // Where, x, y and x_plus_y are vectors on the manifold in the ambient space (so | 
 | // they are kAmbientSize vectors) and delta, y_minus_x are vectors in the | 
 | // tangent space (so they are kTangentSize vectors). | 
 | // | 
 | // The Functor should have the signature: | 
 | // | 
 | // struct Functor { | 
 | //   template <typename T> | 
 | //   bool Plus(const T* x, const T* delta, T* x_plus_delta) const; | 
 | // | 
 | //   template <typename T> | 
 | //   bool Minus(const T* y, const T* x, T* y_minus_x) const; | 
 | // }; | 
 | // | 
 | // Observe that the Plus and Minus operations are templated on the parameter T. | 
 | // The autodiff framework substitutes appropriate "Jet" objects for T in order | 
 | // to compute the derivative when necessary. This is the same mechanism that is | 
 | // used to compute derivatives when using AutoDiffCostFunction. | 
 | // | 
 | // Plus and Minus should return true if the computation is successful and false | 
 | // otherwise, in which case the result will not be used. | 
 | // | 
 | // Given this Functor, the corresponding Manifold can be constructed as: | 
 | // | 
 | // AutoDiffManifold<Functor, kAmbientSize, kTangentSize> manifold; | 
 | // | 
 | // As a concrete example consider the case of Quaternions. Quaternions form a | 
 | // three dimensional manifold embedded in R^4, i.e. they have an ambient | 
 | // dimension of 4 and their tangent space has dimension 3. The following Functor | 
 | // (taken from autodiff_manifold_test.cc) defines the Plus and Minus operations | 
 | // on the Quaternion manifold: | 
 | // | 
 | // NOTE: The following is only used for illustration purposes. Ceres Solver | 
 | // ships with optimized production grade QuaternionManifold implementation. See | 
 | // manifold.h. | 
 | // | 
 | // This functor assumes that the quaternions are laid out as [w,x,y,z] in | 
 | // memory, i.e. the real or scalar part is the first coordinate. | 
 | // | 
 | // struct QuaternionFunctor { | 
 | //   template <typename T> | 
 | //   bool Plus(const T* x, const T* delta, T* x_plus_delta) const { | 
 | //     const T squared_norm_delta = | 
 | //         delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; | 
 | // | 
 | //     T q_delta[4]; | 
 | //     if (squared_norm_delta > T(0.0)) { | 
 | //       T norm_delta = sqrt(squared_norm_delta); | 
 | //       const T sin_delta_by_delta = sin(norm_delta) / norm_delta; | 
 | //       q_delta[0] = cos(norm_delta); | 
 | //       q_delta[1] = sin_delta_by_delta * delta[0]; | 
 | //       q_delta[2] = sin_delta_by_delta * delta[1]; | 
 | //       q_delta[3] = sin_delta_by_delta * delta[2]; | 
 | //     } else { | 
 | //       // We do not just use q_delta = [1,0,0,0] here because that is a | 
 | //       // constant and when used for automatic differentiation will | 
 | //       // lead to a zero derivative. Instead we take a first order | 
 | //       // approximation and evaluate it at zero. | 
 | //       q_delta[0] = T(1.0); | 
 | //       q_delta[1] = delta[0]; | 
 | //       q_delta[2] = delta[1]; | 
 | //       q_delta[3] = delta[2]; | 
 | //     } | 
 | // | 
 | //     QuaternionProduct(q_delta, x, x_plus_delta); | 
 | //     return true; | 
 | //   } | 
 | // | 
 | //   template <typename T> | 
 | //   bool Minus(const T* y, const T* x, T* y_minus_x) const { | 
 | //     T minus_x[4] = {x[0], -x[1], -x[2], -x[3]}; | 
 | //     T ambient_y_minus_x[4]; | 
 | //     QuaternionProduct(y, minus_x, ambient_y_minus_x); | 
 | //     T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] + | 
 | //                     ambient_y_minus_x[2] * ambient_y_minus_x[2] + | 
 | //                     ambient_y_minus_x[3] * ambient_y_minus_x[3]); | 
 | //     if (u_norm > 0.0) { | 
 | //       T theta = atan2(u_norm, ambient_y_minus_x[0]); | 
 | //       y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm; | 
 | //       y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm; | 
 | //       y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm; | 
 | //     } else { | 
 | //       // We do not use [0,0,0] here because even though the value part is | 
 | //       // a constant, the derivative part is not. | 
 | //       y_minus_x[0] = ambient_y_minus_x[1]; | 
 | //       y_minus_x[1] = ambient_y_minus_x[2]; | 
 | //       y_minus_x[2] = ambient_y_minus_x[3]; | 
 | //     } | 
 | //     return true; | 
 | //   } | 
 | // }; | 
 | // | 
 | // Then given this struct, the auto differentiated Quaternion Manifold can now | 
 | // be constructed as | 
 | // | 
 | //   Manifold* manifold = new AutoDiffManifold<QuaternionFunctor, 4, 3>; | 
 |  | 
 | template <typename Functor, int kAmbientSize, int kTangentSize> | 
 | class AutoDiffManifold final : public Manifold { | 
 |  public: | 
 |   AutoDiffManifold() : functor_(std::make_unique<Functor>()) {} | 
 |  | 
 |   // Takes ownership of functor. | 
 |   explicit AutoDiffManifold(Functor* functor) : functor_(functor) {} | 
 |  | 
 |   int AmbientSize() const override { return kAmbientSize; } | 
 |   int TangentSize() const override { return kTangentSize; } | 
 |  | 
 |   bool Plus(const double* x, | 
 |             const double* delta, | 
 |             double* x_plus_delta) const override { | 
 |     return functor_->Plus(x, delta, x_plus_delta); | 
 |   } | 
 |  | 
 |   bool PlusJacobian(const double* x, double* jacobian) const override; | 
 |  | 
 |   bool Minus(const double* y, | 
 |              const double* x, | 
 |              double* y_minus_x) const override { | 
 |     return functor_->Minus(y, x, y_minus_x); | 
 |   } | 
 |  | 
 |   bool MinusJacobian(const double* x, double* jacobian) const override; | 
 |  | 
 |   const Functor& functor() const { return *functor_; } | 
 |  | 
 |  private: | 
 |   std::unique_ptr<Functor> functor_; | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | // The following two helper structs are needed to interface the Plus and Minus | 
 | // methods of the ManifoldFunctor with the automatic differentiation which | 
 | // expects a Functor with operator(). | 
 | template <typename Functor> | 
 | struct PlusWrapper { | 
 |   explicit PlusWrapper(const Functor& functor) : functor(functor) {} | 
 |   template <typename T> | 
 |   bool operator()(const T* x, const T* delta, T* x_plus_delta) const { | 
 |     return functor.Plus(x, delta, x_plus_delta); | 
 |   } | 
 |   const Functor& functor; | 
 | }; | 
 |  | 
 | template <typename Functor> | 
 | struct MinusWrapper { | 
 |   explicit MinusWrapper(const Functor& functor) : functor(functor) {} | 
 |   template <typename T> | 
 |   bool operator()(const T* y, const T* x, T* y_minus_x) const { | 
 |     return functor.Minus(y, x, y_minus_x); | 
 |   } | 
 |   const Functor& functor; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | template <typename Functor, int kAmbientSize, int kTangentSize> | 
 | bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::PlusJacobian( | 
 |     const double* x, double* jacobian) const { | 
 |   double zero_delta[kTangentSize]; | 
 |   for (int i = 0; i < kTangentSize; ++i) { | 
 |     zero_delta[i] = 0.0; | 
 |   } | 
 |  | 
 |   double x_plus_delta[kAmbientSize]; | 
 |   for (int i = 0; i < kAmbientSize; ++i) { | 
 |     x_plus_delta[i] = 0.0; | 
 |   } | 
 |  | 
 |   const double* parameter_ptrs[2] = {x, zero_delta}; | 
 |  | 
 |   // PlusJacobian is D_2 Plus(x,0) so we only need to compute the Jacobian | 
 |   // w.r.t. the second argument. | 
 |   double* jacobian_ptrs[2] = {nullptr, jacobian}; | 
 |   return internal::AutoDifferentiate< | 
 |       kAmbientSize, | 
 |       internal::StaticParameterDims<kAmbientSize, kTangentSize>>( | 
 |       internal::PlusWrapper<Functor>(*functor_), | 
 |       parameter_ptrs, | 
 |       kAmbientSize, | 
 |       x_plus_delta, | 
 |       jacobian_ptrs); | 
 | } | 
 |  | 
 | template <typename Functor, int kAmbientSize, int kTangentSize> | 
 | bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::MinusJacobian( | 
 |     const double* x, double* jacobian) const { | 
 |   double y_minus_x[kTangentSize]; | 
 |   for (int i = 0; i < kTangentSize; ++i) { | 
 |     y_minus_x[i] = 0.0; | 
 |   } | 
 |  | 
 |   const double* parameter_ptrs[2] = {x, x}; | 
 |  | 
 |   // MinusJacobian is D_1 Minus(x,x), so we only need to compute the Jacobian | 
 |   // w.r.t. the first argument. | 
 |   double* jacobian_ptrs[2] = {jacobian, nullptr}; | 
 |   return internal::AutoDifferentiate< | 
 |       kTangentSize, | 
 |       internal::StaticParameterDims<kAmbientSize, kAmbientSize>>( | 
 |       internal::MinusWrapper<Functor>(*functor_), | 
 |       parameter_ptrs, | 
 |       kTangentSize, | 
 |       y_minus_x, | 
 |       jacobian_ptrs); | 
 | } | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_AUTODIFF_MANIFOLD_H_ |