|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2019 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_PUBLIC_COVARIANCE_H_ | 
|  | #define CERES_PUBLIC_COVARIANCE_H_ | 
|  |  | 
|  | #include <memory> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/internal/disable_warnings.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | class Problem; | 
|  |  | 
|  | namespace internal { | 
|  | class CovarianceImpl; | 
|  | }  // namespace internal | 
|  |  | 
|  | // WARNING | 
|  | // ======= | 
|  | // It is very easy to use this class incorrectly without understanding | 
|  | // the underlying mathematics. Please read and understand the | 
|  | // documentation completely before attempting to use it. | 
|  | // | 
|  | // | 
|  | // This class allows the user to evaluate the covariance for a | 
|  | // non-linear least squares problem and provides random access to its | 
|  | // blocks | 
|  | // | 
|  | // Background | 
|  | // ========== | 
|  | // One way to assess the quality of the solution returned by a | 
|  | // non-linear least squares solver is to analyze the covariance of the | 
|  | // solution. | 
|  | // | 
|  | // Let us consider the non-linear regression problem | 
|  | // | 
|  | //   y = f(x) + N(0, I) | 
|  | // | 
|  | // i.e., the observation y is a random non-linear function of the | 
|  | // independent variable x with mean f(x) and identity covariance. Then | 
|  | // the maximum likelihood estimate of x given observations y is the | 
|  | // solution to the non-linear least squares problem: | 
|  | // | 
|  | //  x* = arg min_x |f(x) - y|^2 | 
|  | // | 
|  | // And the covariance of x* is given by | 
|  | // | 
|  | //  C(x*) = inverse[J'(x*)J(x*)] | 
|  | // | 
|  | // Here J(x*) is the Jacobian of f at x*. The above formula assumes | 
|  | // that J(x*) has full column rank. | 
|  | // | 
|  | // If J(x*) is rank deficient, then the covariance matrix C(x*) is | 
|  | // also rank deficient and is given by | 
|  | // | 
|  | //  C(x*) =  pseudoinverse[J'(x*)J(x*)] | 
|  | // | 
|  | // Note that in the above, we assumed that the covariance | 
|  | // matrix for y was identity. This is an important assumption. If this | 
|  | // is not the case and we have | 
|  | // | 
|  | //  y = f(x) + N(0, S) | 
|  | // | 
|  | // Where S is a positive semi-definite matrix denoting the covariance | 
|  | // of y, then the maximum likelihood problem to be solved is | 
|  | // | 
|  | //  x* = arg min_x f'(x) inverse[S] f(x) | 
|  | // | 
|  | // and the corresponding covariance estimate of x* is given by | 
|  | // | 
|  | //  C(x*) = inverse[J'(x*) inverse[S] J(x*)] | 
|  | // | 
|  | // So, if it is the case that the observations being fitted to have a | 
|  | // covariance matrix not equal to identity, then it is the user's | 
|  | // responsibility that the corresponding cost functions are correctly | 
|  | // scaled, e.g. in the above case the cost function for this problem | 
|  | // should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2} | 
|  | // is the inverse square root of the covariance matrix S. | 
|  | // | 
|  | // This class allows the user to evaluate the covariance for a | 
|  | // non-linear least squares problem and provides random access to its | 
|  | // blocks. The computation assumes that the CostFunctions compute | 
|  | // residuals such that their covariance is identity. | 
|  | // | 
|  | // Since the computation of the covariance matrix requires computing | 
|  | // the inverse of a potentially large matrix, this can involve a | 
|  | // rather large amount of time and memory. However, it is usually the | 
|  | // case that the user is only interested in a small part of the | 
|  | // covariance matrix. Quite often just the block diagonal. This class | 
|  | // allows the user to specify the parts of the covariance matrix that | 
|  | // she is interested in and then uses this information to only compute | 
|  | // and store those parts of the covariance matrix. | 
|  | // | 
|  | // Rank of the Jacobian | 
|  | // -------------------- | 
|  | // As we noted above, if the jacobian is rank deficient, then the | 
|  | // inverse of J'J is not defined and instead a pseudo inverse needs to | 
|  | // be computed. | 
|  | // | 
|  | // The rank deficiency in J can be structural -- columns which are | 
|  | // always known to be zero or numerical -- depending on the exact | 
|  | // values in the Jacobian. | 
|  | // | 
|  | // Structural rank deficiency occurs when the problem contains | 
|  | // parameter blocks that are constant. This class correctly handles | 
|  | // structural rank deficiency like that. | 
|  | // | 
|  | // Numerical rank deficiency, where the rank of the matrix cannot be | 
|  | // predicted by its sparsity structure and requires looking at its | 
|  | // numerical values is more complicated. Here again there are two | 
|  | // cases. | 
|  | // | 
|  | //   a. The rank deficiency arises from overparameterization. e.g., a | 
|  | //   four dimensional quaternion used to parameterize SO(3), which is | 
|  | //   a three dimensional manifold. In cases like this, the user should | 
|  | //   use an appropriate LocalParameterization/Manifold. Not only will this lead | 
|  | //   to better numerical behaviour of the Solver, it will also expose | 
|  | //   the rank deficiency to the Covariance object so that it can | 
|  | //   handle it correctly. | 
|  | // | 
|  | //   b. More general numerical rank deficiency in the Jacobian | 
|  | //   requires the computation of the so called Singular Value | 
|  | //   Decomposition (SVD) of J'J. We do not know how to do this for | 
|  | //   large sparse matrices efficiently. For small and moderate sized | 
|  | //   problems this is done using dense linear algebra. | 
|  | // | 
|  | // Gauge Invariance | 
|  | // ---------------- | 
|  | // In structure from motion (3D reconstruction) problems, the | 
|  | // reconstruction is ambiguous up to a similarity transform. This is | 
|  | // known as a Gauge Ambiguity. Handling Gauges correctly requires the | 
|  | // use of SVD or custom inversion algorithms. For small problems the | 
|  | // user can use the dense algorithm. For more details see | 
|  | // | 
|  | // Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge | 
|  | // transformations for uncertainty description of geometric structure | 
|  | // with indeterminacy. IEEE Transactions on Information Theory 47(5): | 
|  | // 2017-2028 (2001) | 
|  | // | 
|  | // Example Usage | 
|  | // ============= | 
|  | // | 
|  | //  double x[3]; | 
|  | //  double y[2]; | 
|  | // | 
|  | //  Problem problem; | 
|  | //  problem.AddParameterBlock(x, 3); | 
|  | //  problem.AddParameterBlock(y, 2); | 
|  | //  <Build Problem> | 
|  | //  <Solve Problem> | 
|  | // | 
|  | //  Covariance::Options options; | 
|  | //  Covariance covariance(options); | 
|  | // | 
|  | //  std::vector<std::pair<const double*, const double*>> covariance_blocks; | 
|  | //  covariance_blocks.push_back(make_pair(x, x)); | 
|  | //  covariance_blocks.push_back(make_pair(y, y)); | 
|  | //  covariance_blocks.push_back(make_pair(x, y)); | 
|  | // | 
|  | //  CHECK(covariance.Compute(covariance_blocks, &problem)); | 
|  | // | 
|  | //  double covariance_xx[3 * 3]; | 
|  | //  double covariance_yy[2 * 2]; | 
|  | //  double covariance_xy[3 * 2]; | 
|  | //  covariance.GetCovarianceBlock(x, x, covariance_xx) | 
|  | //  covariance.GetCovarianceBlock(y, y, covariance_yy) | 
|  | //  covariance.GetCovarianceBlock(x, y, covariance_xy) | 
|  | // | 
|  | class CERES_EXPORT Covariance { | 
|  | public: | 
|  | struct CERES_EXPORT Options { | 
|  | // Sparse linear algebra library to use when a sparse matrix | 
|  | // factorization is being used to compute the covariance matrix. | 
|  | // | 
|  | // Currently this only applies to SPARSE_QR. | 
|  | SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type = | 
|  | #if !defined(CERES_NO_SUITESPARSE) | 
|  | SUITE_SPARSE; | 
|  | #else | 
|  | // Eigen's QR factorization is always available. | 
|  | EIGEN_SPARSE; | 
|  | #endif | 
|  |  | 
|  | // Ceres supports two different algorithms for covariance | 
|  | // estimation, which represent different tradeoffs in speed, | 
|  | // accuracy and reliability. | 
|  | // | 
|  | // 1. DENSE_SVD uses Eigen's JacobiSVD to perform the | 
|  | //    computations. It computes the singular value decomposition | 
|  | // | 
|  | //      U * D * V' = J | 
|  | // | 
|  | //    and then uses it to compute the pseudo inverse of J'J as | 
|  | // | 
|  | //      pseudoinverse[J'J] = V * pseudoinverse[D^2] * V' | 
|  | // | 
|  | //    It is an accurate but slow method and should only be used | 
|  | //    for small to moderate sized problems. It can handle | 
|  | //    full-rank as well as rank deficient Jacobians. | 
|  | // | 
|  | // 2. SPARSE_QR uses the sparse QR factorization algorithm | 
|  | //    to compute the decomposition | 
|  | // | 
|  | //      Q * R = J | 
|  | // | 
|  | //    [J'J]^-1 = [R'*R]^-1 | 
|  | // | 
|  | // SPARSE_QR is not capable of computing the covariance if the | 
|  | // Jacobian is rank deficient. Depending on the value of | 
|  | // Covariance::Options::sparse_linear_algebra_library_type, either | 
|  | // Eigen's Sparse QR factorization algorithm will be used or | 
|  | // SuiteSparse's high performance SuiteSparseQR algorithm will be | 
|  | // used. | 
|  | CovarianceAlgorithmType algorithm_type = SPARSE_QR; | 
|  |  | 
|  | // If the Jacobian matrix is near singular, then inverting J'J | 
|  | // will result in unreliable results, e.g, if | 
|  | // | 
|  | //   J = [1.0 1.0         ] | 
|  | //       [1.0 1.0000001   ] | 
|  | // | 
|  | // which is essentially a rank deficient matrix, we have | 
|  | // | 
|  | //   inv(J'J) = [ 2.0471e+14  -2.0471e+14] | 
|  | //              [-2.0471e+14   2.0471e+14] | 
|  | // | 
|  | // This is not a useful result. Therefore, by default | 
|  | // Covariance::Compute will return false if a rank deficient | 
|  | // Jacobian is encountered. How rank deficiency is detected | 
|  | // depends on the algorithm being used. | 
|  | // | 
|  | // 1. DENSE_SVD | 
|  | // | 
|  | //      min_sigma / max_sigma < sqrt(min_reciprocal_condition_number) | 
|  | // | 
|  | //    where min_sigma and max_sigma are the minimum and maxiumum | 
|  | //    singular values of J respectively. | 
|  | // | 
|  | // 2. SPARSE_QR | 
|  | // | 
|  | //      rank(J) < num_col(J) | 
|  | // | 
|  | //   Here rank(J) is the estimate of the rank of J returned by the | 
|  | //   sparse QR factorization algorithm. It is a fairly reliable | 
|  | //   indication of rank deficiency. | 
|  | // | 
|  | double min_reciprocal_condition_number = 1e-14; | 
|  |  | 
|  | // When using DENSE_SVD, the user has more control in dealing with | 
|  | // singular and near singular covariance matrices. | 
|  | // | 
|  | // As mentioned above, when the covariance matrix is near | 
|  | // singular, instead of computing the inverse of J'J, the | 
|  | // Moore-Penrose pseudoinverse of J'J should be computed. | 
|  | // | 
|  | // If J'J has the eigen decomposition (lambda_i, e_i), where | 
|  | // lambda_i is the i^th eigenvalue and e_i is the corresponding | 
|  | // eigenvector, then the inverse of J'J is | 
|  | // | 
|  | //   inverse[J'J] = sum_i e_i e_i' / lambda_i | 
|  | // | 
|  | // and computing the pseudo inverse involves dropping terms from | 
|  | // this sum that correspond to small eigenvalues. | 
|  | // | 
|  | // How terms are dropped is controlled by | 
|  | // min_reciprocal_condition_number and null_space_rank. | 
|  | // | 
|  | // If null_space_rank is non-negative, then the smallest | 
|  | // null_space_rank eigenvalue/eigenvectors are dropped | 
|  | // irrespective of the magnitude of lambda_i. If the ratio of the | 
|  | // smallest non-zero eigenvalue to the largest eigenvalue in the | 
|  | // truncated matrix is still below | 
|  | // min_reciprocal_condition_number, then the Covariance::Compute() | 
|  | // will fail and return false. | 
|  | // | 
|  | // Setting null_space_rank = -1 drops all terms for which | 
|  | // | 
|  | //   lambda_i / lambda_max < min_reciprocal_condition_number. | 
|  | // | 
|  | // This option has no effect on the SUITE_SPARSE_QR and | 
|  | // EIGEN_SPARSE_QR algorithms. | 
|  | int null_space_rank = 0; | 
|  |  | 
|  | int num_threads = 1; | 
|  |  | 
|  | // Even though the residual blocks in the problem may contain loss | 
|  | // functions, setting apply_loss_function to false will turn off | 
|  | // the application of the loss function to the output of the cost | 
|  | // function and in turn its effect on the covariance. | 
|  | // | 
|  | // TODO(sameergaarwal): Expand this based on Jim's experiments. | 
|  | bool apply_loss_function = true; | 
|  | }; | 
|  |  | 
|  | explicit Covariance(const Options& options); | 
|  | ~Covariance(); | 
|  |  | 
|  | // Compute a part of the covariance matrix. | 
|  | // | 
|  | // The vector covariance_blocks, indexes into the covariance matrix | 
|  | // block-wise using pairs of parameter blocks. This allows the | 
|  | // covariance estimation algorithm to only compute and store these | 
|  | // blocks. | 
|  | // | 
|  | // Since the covariance matrix is symmetric, if the user passes | 
|  | // (block1, block2), then GetCovarianceBlock can be called with | 
|  | // block1, block2 as well as block2, block1. | 
|  | // | 
|  | // covariance_blocks cannot contain duplicates. Bad things will | 
|  | // happen if they do. | 
|  | // | 
|  | // Note that the list of covariance_blocks is only used to determine | 
|  | // what parts of the covariance matrix are computed. The full | 
|  | // Jacobian is used to do the computation, i.e. they do not have an | 
|  | // impact on what part of the Jacobian is used for computation. | 
|  | // | 
|  | // The return value indicates the success or failure of the | 
|  | // covariance computation. Please see the documentation for | 
|  | // Covariance::Options for more on the conditions under which this | 
|  | // function returns false. | 
|  | bool Compute(const std::vector<std::pair<const double*, const double*>>& | 
|  | covariance_blocks, | 
|  | Problem* problem); | 
|  |  | 
|  | // Compute a part of the covariance matrix. | 
|  | // | 
|  | // The vector parameter_blocks contains the parameter blocks that | 
|  | // are used for computing the covariance matrix. From this vector | 
|  | // all covariance pairs are generated. This allows the covariance | 
|  | // estimation algorithm to only compute and store these blocks. | 
|  | // | 
|  | // parameter_blocks cannot contain duplicates. Bad things will | 
|  | // happen if they do. | 
|  | // | 
|  | // Note that the list of covariance_blocks is only used to determine | 
|  | // what parts of the covariance matrix are computed. The full | 
|  | // Jacobian is used to do the computation, i.e. they do not have an | 
|  | // impact on what part of the Jacobian is used for computation. | 
|  | // | 
|  | // The return value indicates the success or failure of the | 
|  | // covariance computation. Please see the documentation for | 
|  | // Covariance::Options for more on the conditions under which this | 
|  | // function returns false. | 
|  | bool Compute(const std::vector<const double*>& parameter_blocks, | 
|  | Problem* problem); | 
|  |  | 
|  | // Return the block of the cross-covariance matrix corresponding to | 
|  | // parameter_block1 and parameter_block2. | 
|  | // | 
|  | // Compute must be called before the first call to | 
|  | // GetCovarianceBlock and the pair <parameter_block1, | 
|  | // parameter_block2> OR the pair <parameter_block2, | 
|  | // parameter_block1> must have been present in the vector | 
|  | // covariance_blocks when Compute was called. Otherwise | 
|  | // GetCovarianceBlock will return false. | 
|  | // | 
|  | // covariance_block must point to a memory location that can store a | 
|  | // parameter_block1_size x parameter_block2_size matrix. The | 
|  | // returned covariance will be a row-major matrix. | 
|  | bool GetCovarianceBlock(const double* parameter_block1, | 
|  | const double* parameter_block2, | 
|  | double* covariance_block) const; | 
|  |  | 
|  | // Return the block of the cross-covariance matrix corresponding to | 
|  | // parameter_block1 and parameter_block2. | 
|  | // Returns cross-covariance in the tangent space if a local | 
|  | // parameterization is associated with either parameter block; | 
|  | // else returns cross-covariance in the ambient space. | 
|  | // | 
|  | // Compute must be called before the first call to | 
|  | // GetCovarianceBlock and the pair <parameter_block1, | 
|  | // parameter_block2> OR the pair <parameter_block2, | 
|  | // parameter_block1> must have been present in the vector | 
|  | // covariance_blocks when Compute was called. Otherwise | 
|  | // GetCovarianceBlock will return false. | 
|  | // | 
|  | // covariance_block must point to a memory location that can store a | 
|  | // parameter_block1_local_size x parameter_block2_local_size matrix. The | 
|  | // returned covariance will be a row-major matrix. | 
|  | bool GetCovarianceBlockInTangentSpace(const double* parameter_block1, | 
|  | const double* parameter_block2, | 
|  | double* covariance_block) const; | 
|  |  | 
|  | // Return the covariance matrix corresponding to all parameter_blocks. | 
|  | // | 
|  | // Compute must be called before calling GetCovarianceMatrix and all | 
|  | // parameter_blocks must have been present in the vector | 
|  | // parameter_blocks when Compute was called. Otherwise | 
|  | // GetCovarianceMatrix returns false. | 
|  | // | 
|  | // covariance_matrix must point to a memory location that can store | 
|  | // the size of the covariance matrix. The covariance matrix will be | 
|  | // a square matrix whose row and column count is equal to the sum of | 
|  | // the sizes of the individual parameter blocks. The covariance | 
|  | // matrix will be a row-major matrix. | 
|  | bool GetCovarianceMatrix(const std::vector<const double*>& parameter_blocks, | 
|  | double* covariance_matrix) const; | 
|  |  | 
|  | // Return the covariance matrix corresponding to parameter_blocks | 
|  | // in the tangent space if a local parameterization is associated | 
|  | // with one of the parameter blocks else returns the covariance | 
|  | // matrix in the ambient space. | 
|  | // | 
|  | // Compute must be called before calling GetCovarianceMatrix and all | 
|  | // parameter_blocks must have been present in the vector | 
|  | // parameters_blocks when Compute was called. Otherwise | 
|  | // GetCovarianceMatrix returns false. | 
|  | // | 
|  | // covariance_matrix must point to a memory location that can store | 
|  | // the size of the covariance matrix. The covariance matrix will be | 
|  | // a square matrix whose row and column count is equal to the sum of | 
|  | // the sizes of the tangent spaces of the individual parameter | 
|  | // blocks. The covariance matrix will be a row-major matrix. | 
|  | bool GetCovarianceMatrixInTangentSpace( | 
|  | const std::vector<const double*>& parameter_blocks, | 
|  | double* covariance_matrix) const; | 
|  |  | 
|  | private: | 
|  | std::unique_ptr<internal::CovarianceImpl> impl_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #include "ceres/internal/reenable_warnings.h" | 
|  |  | 
|  | #endif  // CERES_PUBLIC_COVARIANCE_H_ |