| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // mierle@gmail.com (Keir Mierle) |
| // tbennun@gmail.com (Tal Ben-Nun) |
| // |
| // Finite differencing routines used by NumericDiffCostFunction. |
| |
| #ifndef CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ |
| #define CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ |
| |
| #include <cstring> |
| #include <utility> |
| |
| #include "Eigen/Dense" |
| #include "Eigen/StdVector" |
| #include "ceres/cost_function.h" |
| #include "ceres/internal/fixed_array.h" |
| #include "ceres/internal/variadic_evaluate.h" |
| #include "ceres/numeric_diff_options.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // This is split from the main class because C++ doesn't allow partial template |
| // specializations for member functions. The alternative is to repeat the main |
| // class for differing numbers of parameters, which is also unfortunate. |
| template <typename CostFunctor, |
| NumericDiffMethodType kMethod, |
| int kNumResiduals, |
| typename ParameterDims, |
| int kParameterBlock, |
| int kParameterBlockSize> |
| struct NumericDiff { |
| // Mutates parameters but must restore them before return. |
| static bool EvaluateJacobianForParameterBlock( |
| const CostFunctor* functor, |
| const double* residuals_at_eval_point, |
| const NumericDiffOptions& options, |
| int num_residuals, |
| int parameter_block_index, |
| int parameter_block_size, |
| double** parameters, |
| double* jacobian) { |
| using Eigen::ColMajor; |
| using Eigen::Map; |
| using Eigen::Matrix; |
| using Eigen::RowMajor; |
| |
| DCHECK(jacobian); |
| |
| const int num_residuals_internal = |
| (kNumResiduals != ceres::DYNAMIC ? kNumResiduals : num_residuals); |
| const int parameter_block_index_internal = |
| (kParameterBlock != ceres::DYNAMIC ? kParameterBlock |
| : parameter_block_index); |
| const int parameter_block_size_internal = |
| (kParameterBlockSize != ceres::DYNAMIC ? kParameterBlockSize |
| : parameter_block_size); |
| |
| using ResidualVector = Matrix<double, kNumResiduals, 1>; |
| using ParameterVector = Matrix<double, kParameterBlockSize, 1>; |
| |
| // The convoluted reasoning for choosing the Row/Column major |
| // ordering of the matrix is an artifact of the restrictions in |
| // Eigen that prevent it from creating RowMajor matrices with a |
| // single column. In these cases, we ask for a ColMajor matrix. |
| using JacobianMatrix = |
| Matrix<double, |
| kNumResiduals, |
| kParameterBlockSize, |
| (kParameterBlockSize == 1) ? ColMajor : RowMajor>; |
| |
| Map<JacobianMatrix> parameter_jacobian( |
| jacobian, num_residuals_internal, parameter_block_size_internal); |
| |
| Map<ParameterVector> x_plus_delta( |
| parameters[parameter_block_index_internal], |
| parameter_block_size_internal); |
| ParameterVector x(x_plus_delta); |
| ParameterVector step_size = |
| x.array().abs() * ((kMethod == RIDDERS) |
| ? options.ridders_relative_initial_step_size |
| : options.relative_step_size); |
| |
| // It is not a good idea to make the step size arbitrarily |
| // small. This will lead to problems with round off and numerical |
| // instability when dividing by the step size. The general |
| // recommendation is to not go down below sqrt(epsilon). |
| double min_step_size = std::sqrt(std::numeric_limits<double>::epsilon()); |
| |
| // For Ridders' method, the initial step size is required to be large, |
| // thus ridders_relative_initial_step_size is used. |
| if (kMethod == RIDDERS) { |
| min_step_size = |
| (std::max)(min_step_size, options.ridders_relative_initial_step_size); |
| } |
| |
| // For each parameter in the parameter block, use finite differences to |
| // compute the derivative for that parameter. |
| FixedArray<double> temp_residual_array(num_residuals_internal); |
| FixedArray<double> residual_array(num_residuals_internal); |
| Map<ResidualVector> residuals(residual_array.data(), |
| num_residuals_internal); |
| |
| for (int j = 0; j < parameter_block_size_internal; ++j) { |
| const double delta = (std::max)(min_step_size, step_size(j)); |
| |
| if (kMethod == RIDDERS) { |
| if (!EvaluateRiddersJacobianColumn(functor, |
| j, |
| delta, |
| options, |
| num_residuals_internal, |
| parameter_block_size_internal, |
| x.data(), |
| residuals_at_eval_point, |
| parameters, |
| x_plus_delta.data(), |
| temp_residual_array.data(), |
| residual_array.data())) { |
| return false; |
| } |
| } else { |
| if (!EvaluateJacobianColumn(functor, |
| j, |
| delta, |
| num_residuals_internal, |
| parameter_block_size_internal, |
| x.data(), |
| residuals_at_eval_point, |
| parameters, |
| x_plus_delta.data(), |
| temp_residual_array.data(), |
| residual_array.data())) { |
| return false; |
| } |
| } |
| |
| parameter_jacobian.col(j).matrix() = residuals; |
| } |
| return true; |
| } |
| |
| static bool EvaluateJacobianColumn(const CostFunctor* functor, |
| int parameter_index, |
| double delta, |
| int num_residuals, |
| int parameter_block_size, |
| const double* x_ptr, |
| const double* residuals_at_eval_point, |
| double** parameters, |
| double* x_plus_delta_ptr, |
| double* temp_residuals_ptr, |
| double* residuals_ptr) { |
| using Eigen::Map; |
| using Eigen::Matrix; |
| |
| using ResidualVector = Matrix<double, kNumResiduals, 1>; |
| using ParameterVector = Matrix<double, kParameterBlockSize, 1>; |
| |
| Map<const ParameterVector> x(x_ptr, parameter_block_size); |
| Map<ParameterVector> x_plus_delta(x_plus_delta_ptr, parameter_block_size); |
| |
| Map<ResidualVector> residuals(residuals_ptr, num_residuals); |
| Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals); |
| |
| // Mutate 1 element at a time and then restore. |
| x_plus_delta(parameter_index) = x(parameter_index) + delta; |
| |
| if (!VariadicEvaluate<ParameterDims>( |
| *functor, parameters, residuals.data())) { |
| return false; |
| } |
| |
| // Compute this column of the jacobian in 3 steps: |
| // 1. Store residuals for the forward part. |
| // 2. Subtract residuals for the backward (or 0) part. |
| // 3. Divide out the run. |
| double one_over_delta = 1.0 / delta; |
| if (kMethod == CENTRAL || kMethod == RIDDERS) { |
| // Compute the function on the other side of x(parameter_index). |
| x_plus_delta(parameter_index) = x(parameter_index) - delta; |
| |
| if (!VariadicEvaluate<ParameterDims>( |
| *functor, parameters, temp_residuals.data())) { |
| return false; |
| } |
| |
| residuals -= temp_residuals; |
| one_over_delta /= 2; |
| } else { |
| // Forward difference only; reuse existing residuals evaluation. |
| residuals -= |
| Map<const ResidualVector>(residuals_at_eval_point, num_residuals); |
| } |
| |
| // Restore x_plus_delta. |
| x_plus_delta(parameter_index) = x(parameter_index); |
| |
| // Divide out the run to get slope. |
| residuals *= one_over_delta; |
| |
| return true; |
| } |
| |
| // This numeric difference implementation uses adaptive differentiation |
| // on the parameters to obtain the Jacobian matrix. The adaptive algorithm |
| // is based on Ridders' method for adaptive differentiation, which creates |
| // a Romberg tableau from varying step sizes and extrapolates the |
| // intermediate results to obtain the current computational error. |
| // |
| // References: |
| // C.J.F. Ridders, Accurate computation of F'(x) and F'(x) F"(x), Advances |
| // in Engineering Software (1978), Volume 4, Issue 2, April 1982, |
| // Pages 75-76, ISSN 0141-1195, |
| // http://dx.doi.org/10.1016/S0141-1195(82)80057-0. |
| static bool EvaluateRiddersJacobianColumn( |
| const CostFunctor* functor, |
| int parameter_index, |
| double delta, |
| const NumericDiffOptions& options, |
| int num_residuals, |
| int parameter_block_size, |
| const double* x_ptr, |
| const double* residuals_at_eval_point, |
| double** parameters, |
| double* x_plus_delta_ptr, |
| double* temp_residuals_ptr, |
| double* residuals_ptr) { |
| using Eigen::aligned_allocator; |
| using Eigen::Map; |
| using Eigen::Matrix; |
| |
| using ResidualVector = Matrix<double, kNumResiduals, 1>; |
| using ResidualCandidateMatrix = |
| Matrix<double, kNumResiduals, Eigen::Dynamic>; |
| using ParameterVector = Matrix<double, kParameterBlockSize, 1>; |
| |
| Map<const ParameterVector> x(x_ptr, parameter_block_size); |
| Map<ParameterVector> x_plus_delta(x_plus_delta_ptr, parameter_block_size); |
| |
| Map<ResidualVector> residuals(residuals_ptr, num_residuals); |
| Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals); |
| |
| // In order for the algorithm to converge, the step size should be |
| // initialized to a value that is large enough to produce a significant |
| // change in the function. |
| // As the derivative is estimated, the step size decreases. |
| // By default, the step sizes are chosen so that the middle column |
| // of the Romberg tableau uses the input delta. |
| double current_step_size = |
| delta * pow(options.ridders_step_shrink_factor, |
| options.max_num_ridders_extrapolations / 2); |
| |
| // Double-buffering temporary differential candidate vectors |
| // from previous step size. |
| ResidualCandidateMatrix stepsize_candidates_a( |
| num_residuals, options.max_num_ridders_extrapolations); |
| ResidualCandidateMatrix stepsize_candidates_b( |
| num_residuals, options.max_num_ridders_extrapolations); |
| ResidualCandidateMatrix* current_candidates = &stepsize_candidates_a; |
| ResidualCandidateMatrix* previous_candidates = &stepsize_candidates_b; |
| |
| // Represents the computational error of the derivative. This variable is |
| // initially set to a large value, and is set to the difference between |
| // current and previous finite difference extrapolations. |
| // norm_error is supposed to decrease as the finite difference tableau |
| // generation progresses, serving both as an estimate for differentiation |
| // error and as a measure of differentiation numerical stability. |
| double norm_error = (std::numeric_limits<double>::max)(); |
| |
| // Loop over decreasing step sizes until: |
| // 1. Error is smaller than a given value (ridders_epsilon), |
| // 2. Maximal order of extrapolation reached, or |
| // 3. Extrapolation becomes numerically unstable. |
| for (int i = 0; i < options.max_num_ridders_extrapolations; ++i) { |
| // Compute the numerical derivative at this step size. |
| if (!EvaluateJacobianColumn(functor, |
| parameter_index, |
| current_step_size, |
| num_residuals, |
| parameter_block_size, |
| x.data(), |
| residuals_at_eval_point, |
| parameters, |
| x_plus_delta.data(), |
| temp_residuals.data(), |
| current_candidates->col(0).data())) { |
| // Something went wrong; bail. |
| return false; |
| } |
| |
| // Store initial results. |
| if (i == 0) { |
| residuals = current_candidates->col(0); |
| } |
| |
| // Shrink differentiation step size. |
| current_step_size /= options.ridders_step_shrink_factor; |
| |
| // Extrapolation factor for Richardson acceleration method (see below). |
| double richardson_factor = options.ridders_step_shrink_factor * |
| options.ridders_step_shrink_factor; |
| for (int k = 1; k <= i; ++k) { |
| // Extrapolate the various orders of finite differences using |
| // the Richardson acceleration method. |
| current_candidates->col(k) = |
| (richardson_factor * current_candidates->col(k - 1) - |
| previous_candidates->col(k - 1)) / |
| (richardson_factor - 1.0); |
| |
| richardson_factor *= options.ridders_step_shrink_factor * |
| options.ridders_step_shrink_factor; |
| |
| // Compute the difference between the previous value and the current. |
| double candidate_error = (std::max)( |
| (current_candidates->col(k) - current_candidates->col(k - 1)) |
| .norm(), |
| (current_candidates->col(k) - previous_candidates->col(k - 1)) |
| .norm()); |
| |
| // If the error has decreased, update results. |
| if (candidate_error <= norm_error) { |
| norm_error = candidate_error; |
| residuals = current_candidates->col(k); |
| |
| // If the error is small enough, stop. |
| if (norm_error < options.ridders_epsilon) { |
| break; |
| } |
| } |
| } |
| |
| // After breaking out of the inner loop, declare convergence. |
| if (norm_error < options.ridders_epsilon) { |
| break; |
| } |
| |
| // Check to see if the current gradient estimate is numerically unstable. |
| // If so, bail out and return the last stable result. |
| if (i > 0) { |
| double tableau_error = |
| (current_candidates->col(i) - previous_candidates->col(i - 1)) |
| .norm(); |
| |
| // Compare current error to the chosen candidate's error. |
| if (tableau_error >= 2 * norm_error) { |
| break; |
| } |
| } |
| |
| std::swap(current_candidates, previous_candidates); |
| } |
| return true; |
| } |
| }; |
| |
| // This function calls NumericDiff<...>::EvaluateJacobianForParameterBlock for |
| // each parameter block. |
| // |
| // Example: |
| // A call to |
| // EvaluateJacobianForParameterBlocks<StaticParameterDims<2, 3>>( |
| // functor, |
| // residuals_at_eval_point, |
| // options, |
| // num_residuals, |
| // parameters, |
| // jacobians); |
| // will result in the following calls to |
| // NumericDiff<...>::EvaluateJacobianForParameterBlock: |
| // |
| // if (jacobians[0] != nullptr) { |
| // if (!NumericDiff< |
| // CostFunctor, |
| // method, |
| // kNumResiduals, |
| // StaticParameterDims<2, 3>, |
| // 0, |
| // 2>::EvaluateJacobianForParameterBlock(functor, |
| // residuals_at_eval_point, |
| // options, |
| // num_residuals, |
| // 0, |
| // 2, |
| // parameters, |
| // jacobians[0])) { |
| // return false; |
| // } |
| // } |
| // if (jacobians[1] != nullptr) { |
| // if (!NumericDiff< |
| // CostFunctor, |
| // method, |
| // kNumResiduals, |
| // StaticParameterDims<2, 3>, |
| // 1, |
| // 3>::EvaluateJacobianForParameterBlock(functor, |
| // residuals_at_eval_point, |
| // options, |
| // num_residuals, |
| // 1, |
| // 3, |
| // parameters, |
| // jacobians[1])) { |
| // return false; |
| // } |
| // } |
| template <typename ParameterDims, |
| typename Parameters = typename ParameterDims::Parameters, |
| int ParameterIdx = 0> |
| struct EvaluateJacobianForParameterBlocks; |
| |
| template <typename ParameterDims, int N, int... Ns, int ParameterIdx> |
| struct EvaluateJacobianForParameterBlocks<ParameterDims, |
| std::integer_sequence<int, N, Ns...>, |
| ParameterIdx> { |
| template <NumericDiffMethodType method, |
| int kNumResiduals, |
| typename CostFunctor> |
| static bool Apply(const CostFunctor* functor, |
| const double* residuals_at_eval_point, |
| const NumericDiffOptions& options, |
| int num_residuals, |
| double** parameters, |
| double** jacobians) { |
| if (jacobians[ParameterIdx] != nullptr) { |
| if (!NumericDiff< |
| CostFunctor, |
| method, |
| kNumResiduals, |
| ParameterDims, |
| ParameterIdx, |
| N>::EvaluateJacobianForParameterBlock(functor, |
| residuals_at_eval_point, |
| options, |
| num_residuals, |
| ParameterIdx, |
| N, |
| parameters, |
| jacobians[ParameterIdx])) { |
| return false; |
| } |
| } |
| |
| return EvaluateJacobianForParameterBlocks<ParameterDims, |
| std::integer_sequence<int, Ns...>, |
| ParameterIdx + 1>:: |
| template Apply<method, kNumResiduals>(functor, |
| residuals_at_eval_point, |
| options, |
| num_residuals, |
| parameters, |
| jacobians); |
| } |
| }; |
| |
| // End of 'recursion'. Nothing more to do. |
| template <typename ParameterDims, int ParameterIdx> |
| struct EvaluateJacobianForParameterBlocks<ParameterDims, |
| std::integer_sequence<int>, |
| ParameterIdx> { |
| template <NumericDiffMethodType method, |
| int kNumResiduals, |
| typename CostFunctor> |
| static bool Apply(const CostFunctor* /* NOT USED*/, |
| const double* /* NOT USED*/, |
| const NumericDiffOptions& /* NOT USED*/, |
| int /* NOT USED*/, |
| double** /* NOT USED*/, |
| double** /* NOT USED*/) { |
| return true; |
| } |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ |