|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: jodebo_beck@gmx.de (Johannes Beck) | 
|  | // | 
|  |  | 
|  | #ifndef CERES_PUBLIC_LINE_MANIFOLD_H_ | 
|  | #define CERES_PUBLIC_LINE_MANIFOLD_H_ | 
|  |  | 
|  | #include <Eigen/Core> | 
|  | #include <algorithm> | 
|  | #include <array> | 
|  | #include <memory> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/internal/disable_warnings.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/internal/householder_vector.h" | 
|  | #include "ceres/internal/sphere_manifold_functions.h" | 
|  | #include "ceres/manifold.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | // This provides a manifold for lines, where the line is | 
|  | // over-parameterized by an origin point and a direction vector. So the | 
|  | // parameter vector size needs to be two times the ambient space dimension, | 
|  | // where the first half is interpreted as the origin point and the second half | 
|  | // as the direction. | 
|  | // | 
|  | // The plus operator for the line direction is the same as for the | 
|  | // SphereManifold. The update of the origin point is | 
|  | // perpendicular to the line direction before the update. | 
|  | // | 
|  | // This manifold is a special case of the affine Grassmannian | 
|  | // manifold (see https://en.wikipedia.org/wiki/Affine_Grassmannian_(manifold)) | 
|  | // for the case Graff_1(R^n). | 
|  | // | 
|  | // The class works with dynamic and static ambient space dimensions. If the | 
|  | // ambient space dimensions is known at compile time use | 
|  | // | 
|  | //    LineManifold<3> manifold; | 
|  | // | 
|  | // If the ambient space dimensions is not known at compile time the template | 
|  | // parameter needs to be set to ceres::DYNAMIC and the actual dimension needs | 
|  | // to be provided as a constructor argument: | 
|  | // | 
|  | //    LineManifold<ceres::DYNAMIC> manifold(ambient_dim); | 
|  | // | 
|  | template <int AmbientSpaceDimension> | 
|  | class LineManifold final : public Manifold { | 
|  | public: | 
|  | static_assert(AmbientSpaceDimension == DYNAMIC || AmbientSpaceDimension >= 2, | 
|  | "The ambient space must be at least 2."); | 
|  | static_assert(ceres::DYNAMIC == Eigen::Dynamic, | 
|  | "ceres::DYNAMIC needs to be the same as Eigen::Dynamic."); | 
|  |  | 
|  | LineManifold(); | 
|  | explicit LineManifold(int size); | 
|  |  | 
|  | int AmbientSize() const override { return 2 * size_; } | 
|  | int TangentSize() const override { return 2 * (size_ - 1); } | 
|  | bool Plus(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) const override; | 
|  | bool PlusJacobian(const double* x, double* jacobian) const override; | 
|  | bool Minus(const double* y, | 
|  | const double* x, | 
|  | double* y_minus_x) const override; | 
|  | bool MinusJacobian(const double* x, double* jacobian) const override; | 
|  |  | 
|  | private: | 
|  | static constexpr bool IsDynamic = (AmbientSpaceDimension == ceres::DYNAMIC); | 
|  | static constexpr int TangentSpaceDimension = | 
|  | IsDynamic ? ceres::DYNAMIC : AmbientSpaceDimension - 1; | 
|  |  | 
|  | static constexpr int DAmbientSpaceDimension = | 
|  | IsDynamic ? ceres::DYNAMIC : 2 * AmbientSpaceDimension; | 
|  | static constexpr int DTangentSpaceDimension = | 
|  | IsDynamic ? ceres::DYNAMIC : 2 * TangentSpaceDimension; | 
|  |  | 
|  | using AmbientVector = Eigen::Matrix<double, AmbientSpaceDimension, 1>; | 
|  | using TangentVector = Eigen::Matrix<double, TangentSpaceDimension, 1>; | 
|  | using MatrixPlusJacobian = Eigen::Matrix<double, | 
|  | DAmbientSpaceDimension, | 
|  | DTangentSpaceDimension, | 
|  | Eigen::RowMajor>; | 
|  | using MatrixMinusJacobian = Eigen::Matrix<double, | 
|  | DTangentSpaceDimension, | 
|  | DAmbientSpaceDimension, | 
|  | Eigen::RowMajor>; | 
|  |  | 
|  | const int size_{AmbientSpaceDimension}; | 
|  | }; | 
|  |  | 
|  | template <int AmbientSpaceDimension> | 
|  | LineManifold<AmbientSpaceDimension>::LineManifold() | 
|  | : size_{AmbientSpaceDimension} { | 
|  | static_assert( | 
|  | AmbientSpaceDimension != Eigen::Dynamic, | 
|  | "The size is set to dynamic. Please call the constructor with a size."); | 
|  | } | 
|  |  | 
|  | template <int AmbientSpaceDimension> | 
|  | LineManifold<AmbientSpaceDimension>::LineManifold(int size) : size_{size} { | 
|  | if (AmbientSpaceDimension != Eigen::Dynamic) { | 
|  | CHECK_EQ(AmbientSpaceDimension, size) | 
|  | << "Specified size by template parameter differs from the supplied " | 
|  | "one."; | 
|  | } else { | 
|  | CHECK_GT(size_, 1) | 
|  | << "The size of the manifold needs to be greater than 1."; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int AmbientSpaceDimension> | 
|  | bool LineManifold<AmbientSpaceDimension>::Plus(const double* x_ptr, | 
|  | const double* delta_ptr, | 
|  | double* x_plus_delta_ptr) const { | 
|  | // We seek a box plus operator of the form | 
|  | // | 
|  | //   [o*, d*] = Plus([o, d], [delta_o, delta_d]) | 
|  | // | 
|  | // where o is the origin point, d is the direction vector, delta_o is | 
|  | // the delta of the origin point and delta_d the delta of the direction and | 
|  | // o* and d* is the updated origin point and direction. | 
|  | // | 
|  | // We separate the Plus operator into the origin point and directional part | 
|  | //   d* = Plus_d(d, delta_d) | 
|  | //   o* = Plus_o(o, d, delta_o) | 
|  | // | 
|  | // The direction update function Plus_d is the same as as the SphereManifold: | 
|  | // | 
|  | //   d* = H_{v(d)} [0.5 sinc(0.5 |delta_d|) delta_d, cos(0.5 |delta_d|)]^T | 
|  | // | 
|  | // where H is the householder matrix | 
|  | //   H_{v} = I - (2 / |v|^2) v v^T | 
|  | // and | 
|  | //   v(d) = d - sign(d_n) |d| e_n. | 
|  | // | 
|  | // The origin point update function Plus_o is defined as | 
|  | // | 
|  | //   o* = o + H_{v(d)} [0.5 delta_o, 0]^T. | 
|  |  | 
|  | Eigen::Map<const AmbientVector> o(x_ptr, size_); | 
|  | Eigen::Map<const AmbientVector> d(x_ptr + size_, size_); | 
|  |  | 
|  | Eigen::Map<const TangentVector> delta_o(delta_ptr, size_ - 1); | 
|  | Eigen::Map<const TangentVector> delta_d(delta_ptr + size_ - 1, size_ - 1); | 
|  | Eigen::Map<AmbientVector> o_plus_delta(x_plus_delta_ptr, size_); | 
|  | Eigen::Map<AmbientVector> d_plus_delta(x_plus_delta_ptr + size_, size_); | 
|  |  | 
|  | const double norm_delta_d = delta_d.norm(); | 
|  |  | 
|  | o_plus_delta = o; | 
|  |  | 
|  | // Shortcut for zero delta direction. | 
|  | if (norm_delta_d == 0.0) { | 
|  | d_plus_delta = d; | 
|  |  | 
|  | if (delta_o.isZero(0.0)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate the householder transformation which is needed for f_d and f_o. | 
|  | AmbientVector v(size_); | 
|  | double beta; | 
|  |  | 
|  | // NOTE: The explicit template arguments are needed here because | 
|  | // ComputeHouseholderVector is templated and some versions of MSVC | 
|  | // have trouble deducing the type of v automatically. | 
|  | internal::ComputeHouseholderVector<Eigen::Map<const AmbientVector>, | 
|  | double, | 
|  | AmbientSpaceDimension>(d, &v, &beta); | 
|  |  | 
|  | if (norm_delta_d != 0.0) { | 
|  | internal::ComputeSphereManifoldPlus( | 
|  | v, beta, d, delta_d, norm_delta_d, &d_plus_delta); | 
|  | } | 
|  |  | 
|  | // The null space is in the direction of the line, so the tangent space is | 
|  | // perpendicular to the line direction. This is achieved by using the | 
|  | // householder matrix of the direction and allow only movements | 
|  | // perpendicular to e_n. | 
|  | // | 
|  | // The factor of 0.5 is used to be consistent with the line direction | 
|  | // update. | 
|  | AmbientVector y(size_); | 
|  | y << 0.5 * delta_o, 0; | 
|  | o_plus_delta += internal::ApplyHouseholderVector(y, v, beta); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <int AmbientSpaceDimension> | 
|  | bool LineManifold<AmbientSpaceDimension>::PlusJacobian( | 
|  | const double* x_ptr, double* jacobian_ptr) const { | 
|  | Eigen::Map<const AmbientVector> d(x_ptr + size_, size_); | 
|  | Eigen::Map<MatrixPlusJacobian> jacobian( | 
|  | jacobian_ptr, 2 * size_, 2 * (size_ - 1)); | 
|  |  | 
|  | // Clear the Jacobian as only half of the matrix is not zero. | 
|  | jacobian.setZero(); | 
|  |  | 
|  | auto jacobian_d = | 
|  | jacobian | 
|  | .template topLeftCorner<AmbientSpaceDimension, TangentSpaceDimension>( | 
|  | size_, size_ - 1); | 
|  | auto jacobian_o = jacobian.template bottomRightCorner<AmbientSpaceDimension, | 
|  | TangentSpaceDimension>( | 
|  | size_, size_ - 1); | 
|  | internal::ComputeSphereManifoldPlusJacobian(d, &jacobian_d); | 
|  | jacobian_o = jacobian_d; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <int AmbientSpaceDimension> | 
|  | bool LineManifold<AmbientSpaceDimension>::Minus(const double* y_ptr, | 
|  | const double* x_ptr, | 
|  | double* y_minus_x) const { | 
|  | Eigen::Map<const AmbientVector> y_o(y_ptr, size_); | 
|  | Eigen::Map<const AmbientVector> y_d(y_ptr + size_, size_); | 
|  | Eigen::Map<const AmbientVector> x_o(x_ptr, size_); | 
|  | Eigen::Map<const AmbientVector> x_d(x_ptr + size_, size_); | 
|  |  | 
|  | Eigen::Map<TangentVector> y_minus_x_o(y_minus_x, size_ - 1); | 
|  | Eigen::Map<TangentVector> y_minus_x_d(y_minus_x + size_ - 1, size_ - 1); | 
|  |  | 
|  | AmbientVector v(size_); | 
|  | double beta; | 
|  |  | 
|  | // NOTE: The explicit template arguments are needed here because | 
|  | // ComputeHouseholderVector is templated and some versions of MSVC | 
|  | // have trouble deducing the type of v automatically. | 
|  | internal::ComputeHouseholderVector<Eigen::Map<const AmbientVector>, | 
|  | double, | 
|  | AmbientSpaceDimension>(x_d, &v, &beta); | 
|  |  | 
|  | internal::ComputeSphereManifoldMinus(v, beta, x_d, y_d, &y_minus_x_d); | 
|  |  | 
|  | AmbientVector delta_o = y_o - x_o; | 
|  | const AmbientVector h_delta_o = | 
|  | 2.0 * internal::ApplyHouseholderVector(delta_o, v, beta); | 
|  | y_minus_x_o = h_delta_o.template head<TangentSpaceDimension>(size_ - 1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <int AmbientSpaceDimension> | 
|  | bool LineManifold<AmbientSpaceDimension>::MinusJacobian( | 
|  | const double* x_ptr, double* jacobian_ptr) const { | 
|  | Eigen::Map<const AmbientVector> d(x_ptr + size_, size_); | 
|  | Eigen::Map<MatrixMinusJacobian> jacobian( | 
|  | jacobian_ptr, 2 * (size_ - 1), 2 * size_); | 
|  |  | 
|  | // Clear the Jacobian as only half of the matrix is not zero. | 
|  | jacobian.setZero(); | 
|  |  | 
|  | auto jacobian_d = | 
|  | jacobian | 
|  | .template topLeftCorner<TangentSpaceDimension, AmbientSpaceDimension>( | 
|  | size_ - 1, size_); | 
|  | auto jacobian_o = jacobian.template bottomRightCorner<TangentSpaceDimension, | 
|  | AmbientSpaceDimension>( | 
|  | size_ - 1, size_); | 
|  | internal::ComputeSphereManifoldMinusJacobian(d, &jacobian_d); | 
|  | jacobian_o = jacobian_d; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | // clang-format off | 
|  | #include "ceres/internal/reenable_warnings.h" | 
|  | // clang-format on | 
|  |  | 
|  | #endif  // CERES_PUBLIC_LINE_MANIFOLD_H_ |