|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2019 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_PUBLIC_ORDERED_GROUPS_H_ | 
|  | #define CERES_PUBLIC_ORDERED_GROUPS_H_ | 
|  |  | 
|  | #include <map> | 
|  | #include <set> | 
|  | #include <unordered_map> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/internal/export.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | // A class for storing and manipulating an ordered collection of | 
|  | // groups/sets with the following semantics: | 
|  | // | 
|  | // Group ids are non-negative integer values. Elements are any type | 
|  | // that can serve as a key in a map or an element of a set. | 
|  | // | 
|  | // An element can only belong to one group at a time. A group may | 
|  | // contain an arbitrary number of elements. | 
|  | // | 
|  | // Groups are ordered by their group id. | 
|  | template <typename T> | 
|  | class OrderedGroups { | 
|  | public: | 
|  | // Add an element to a group. If a group with this id does not | 
|  | // exist, one is created. This method can be called any number of | 
|  | // times for the same element. Group ids should be non-negative | 
|  | // numbers. | 
|  | // | 
|  | // Return value indicates if adding the element was a success. | 
|  | bool AddElementToGroup(const T element, const int group) { | 
|  | if (group < 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto it = element_to_group_.find(element); | 
|  | if (it != element_to_group_.end()) { | 
|  | if (it->second == group) { | 
|  | // Element is already in the right group, nothing to do. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | group_to_elements_[it->second].erase(element); | 
|  | if (group_to_elements_[it->second].size() == 0) { | 
|  | group_to_elements_.erase(it->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | element_to_group_[element] = group; | 
|  | group_to_elements_[group].insert(element); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Clear() { | 
|  | group_to_elements_.clear(); | 
|  | element_to_group_.clear(); | 
|  | } | 
|  |  | 
|  | // Remove the element, no matter what group it is in. Return value | 
|  | // indicates if the element was actually removed. | 
|  | bool Remove(const T element) { | 
|  | const int current_group = GroupId(element); | 
|  | if (current_group < 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | group_to_elements_[current_group].erase(element); | 
|  |  | 
|  | if (group_to_elements_[current_group].size() == 0) { | 
|  | // If the group is empty, then get rid of it. | 
|  | group_to_elements_.erase(current_group); | 
|  | } | 
|  |  | 
|  | element_to_group_.erase(element); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Bulk remove elements. The return value indicates the number of | 
|  | // elements successfully removed. | 
|  | int Remove(const std::vector<T>& elements) { | 
|  | if (NumElements() == 0 || elements.size() == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int num_removed = 0; | 
|  | for (int i = 0; i < elements.size(); ++i) { | 
|  | num_removed += Remove(elements[i]); | 
|  | } | 
|  | return num_removed; | 
|  | } | 
|  |  | 
|  | // Reverse the order of the groups in place. | 
|  | void Reverse() { | 
|  | if (NumGroups() == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto it = group_to_elements_.rbegin(); | 
|  | std::map<int, std::set<T>> new_group_to_elements; | 
|  | new_group_to_elements[it->first] = it->second; | 
|  |  | 
|  | int new_group_id = it->first + 1; | 
|  | for (++it; it != group_to_elements_.rend(); ++it) { | 
|  | for (const auto& element : it->second) { | 
|  | element_to_group_[element] = new_group_id; | 
|  | } | 
|  | new_group_to_elements[new_group_id] = it->second; | 
|  | new_group_id++; | 
|  | } | 
|  |  | 
|  | group_to_elements_.swap(new_group_to_elements); | 
|  | } | 
|  |  | 
|  | // Return the group id for the element. If the element is not a | 
|  | // member of any group, return -1. | 
|  | int GroupId(const T element) const { | 
|  | auto it = element_to_group_.find(element); | 
|  | if (it == element_to_group_.end()) { | 
|  | return -1; | 
|  | } | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | bool IsMember(const T element) const { | 
|  | auto it = element_to_group_.find(element); | 
|  | return (it != element_to_group_.end()); | 
|  | } | 
|  |  | 
|  | // This function always succeeds, i.e., implicitly there exists a | 
|  | // group for every integer. | 
|  | int GroupSize(const int group) const { | 
|  | auto it = group_to_elements_.find(group); | 
|  | return (it == group_to_elements_.end()) ? 0 : it->second.size(); | 
|  | } | 
|  |  | 
|  | int NumElements() const { return element_to_group_.size(); } | 
|  |  | 
|  | // Number of groups with one or more elements. | 
|  | int NumGroups() const { return group_to_elements_.size(); } | 
|  |  | 
|  | // The first group with one or more elements. Calling this when | 
|  | // there are no groups with non-zero elements will result in a | 
|  | // crash. | 
|  | int MinNonZeroGroup() const { | 
|  | CHECK_NE(NumGroups(), 0); | 
|  | return group_to_elements_.begin()->first; | 
|  | } | 
|  |  | 
|  | const std::map<int, std::set<T>>& group_to_elements() const { | 
|  | return group_to_elements_; | 
|  | } | 
|  |  | 
|  | const std::map<T, int>& element_to_group() const { return element_to_group_; } | 
|  |  | 
|  | private: | 
|  | std::map<int, std::set<T>> group_to_elements_; | 
|  | std::unordered_map<T, int> element_to_group_; | 
|  | }; | 
|  |  | 
|  | // Typedef for the most commonly used version of OrderedGroups. | 
|  | using ParameterBlockOrdering = OrderedGroups<double*>; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_ORDERED_GROUP_H_ |