| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 |  | 
 | #include "ceres/internal/autodiff.h" | 
 |  | 
 | #include "ceres/random.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | template <typename T> | 
 | inline T& RowMajorAccess(T* base, int rows, int cols, int i, int j) { | 
 |   return base[cols * i + j]; | 
 | } | 
 |  | 
 | // Do (symmetric) finite differencing using the given function object 'b' of | 
 | // type 'B' and scalar type 'T' with step size 'del'. | 
 | // | 
 | // The type B should have a signature | 
 | // | 
 | //   bool operator()(T const *, T *) const; | 
 | // | 
 | // which maps a vector of parameters to a vector of outputs. | 
 | template <typename B, typename T, int M, int N> | 
 | inline bool SymmetricDiff(const B& b, | 
 |                           const T par[N], | 
 |                           T del,  // step size. | 
 |                           T fun[M], | 
 |                           T jac[M * N]) {  // row-major. | 
 |   if (!b(par, fun)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Temporary parameter vector. | 
 |   T tmp_par[N]; | 
 |   for (int j = 0; j < N; ++j) { | 
 |     tmp_par[j] = par[j]; | 
 |   } | 
 |  | 
 |   // For each dimension, we do one forward step and one backward step in | 
 |   // parameter space, and store the output vector vectors in these vectors. | 
 |   T fwd_fun[M]; | 
 |   T bwd_fun[M]; | 
 |  | 
 |   for (int j = 0; j < N; ++j) { | 
 |     // Forward step. | 
 |     tmp_par[j] = par[j] + del; | 
 |     if (!b(tmp_par, fwd_fun)) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Backward step. | 
 |     tmp_par[j] = par[j] - del; | 
 |     if (!b(tmp_par, bwd_fun)) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Symmetric differencing: | 
 |     //   f'(a) = (f(a + h) - f(a - h)) / (2 h) | 
 |     for (int i = 0; i < M; ++i) { | 
 |       RowMajorAccess(jac, M, N, i, j) = | 
 |           (fwd_fun[i] - bwd_fun[i]) / (T(2) * del); | 
 |     } | 
 |  | 
 |     // Restore our temporary vector. | 
 |     tmp_par[j] = par[j]; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename A> | 
 | inline void QuaternionToScaledRotation(A const q[4], A R[3 * 3]) { | 
 |   // Make convenient names for elements of q. | 
 |   A a = q[0]; | 
 |   A b = q[1]; | 
 |   A c = q[2]; | 
 |   A d = q[3]; | 
 |   // This is not to eliminate common sub-expression, but to | 
 |   // make the lines shorter so that they fit in 80 columns! | 
 |   A aa = a * a; | 
 |   A ab = a * b; | 
 |   A ac = a * c; | 
 |   A ad = a * d; | 
 |   A bb = b * b; | 
 |   A bc = b * c; | 
 |   A bd = b * d; | 
 |   A cc = c * c; | 
 |   A cd = c * d; | 
 |   A dd = d * d; | 
 | #define R(i, j) RowMajorAccess(R, 3, 3, (i), (j)) | 
 |   R(0, 0) = aa + bb - cc - dd; | 
 |   R(0, 1) = A(2) * (bc - ad); | 
 |   R(0, 2) = A(2) * (ac + bd);  // NOLINT | 
 |   R(1, 0) = A(2) * (ad + bc); | 
 |   R(1, 1) = aa - bb + cc - dd; | 
 |   R(1, 2) = A(2) * (cd - ab);  // NOLINT | 
 |   R(2, 0) = A(2) * (bd - ac); | 
 |   R(2, 1) = A(2) * (ab + cd); | 
 |   R(2, 2) = aa - bb - cc + dd;  // NOLINT | 
 | #undef R | 
 | } | 
 |  | 
 | // A structure for projecting a 3x4 camera matrix and a | 
 | // homogeneous 3D point, to a 2D inhomogeneous point. | 
 | struct Projective { | 
 |   // Function that takes P and X as separate vectors: | 
 |   //   P, X -> x | 
 |   template <typename A> | 
 |   bool operator()(A const P[12], A const X[4], A x[2]) const { | 
 |     A PX[3]; | 
 |     for (int i = 0; i < 3; ++i) { | 
 |       PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0] + | 
 |               RowMajorAccess(P, 3, 4, i, 1) * X[1] + | 
 |               RowMajorAccess(P, 3, 4, i, 2) * X[2] + | 
 |               RowMajorAccess(P, 3, 4, i, 3) * X[3]; | 
 |     } | 
 |     if (PX[2] != 0.0) { | 
 |       x[0] = PX[0] / PX[2]; | 
 |       x[1] = PX[1] / PX[2]; | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Version that takes P and X packed in one vector: | 
 |   // | 
 |   //   (P, X) -> x | 
 |   // | 
 |   template <typename A> | 
 |   bool operator()(A const P_X[12 + 4], A x[2]) const { | 
 |     return operator()(P_X + 0, P_X + 12, x); | 
 |   } | 
 | }; | 
 |  | 
 | // Test projective camera model projector. | 
 | TEST(AutoDiff, ProjectiveCameraModel) { | 
 |   srand(5); | 
 |   double const tol = 1e-10;  // floating-point tolerance. | 
 |   double const del = 1e-4;   // finite-difference step. | 
 |   double const err = 1e-6;   // finite-difference tolerance. | 
 |  | 
 |   Projective b; | 
 |  | 
 |   // Make random P and X, in a single vector. | 
 |   double PX[12 + 4]; | 
 |   for (double& PX_i : PX) { | 
 |     PX_i = RandDouble(); | 
 |   } | 
 |  | 
 |   // Handy names for the P and X parts. | 
 |   double* P = PX + 0; | 
 |   double* X = PX + 12; | 
 |  | 
 |   // Apply the mapping, to get image point b_x. | 
 |   double b_x[2]; | 
 |   b(P, X, b_x); | 
 |  | 
 |   // Use finite differencing to estimate the Jacobian. | 
 |   double fd_x[2]; | 
 |   double fd_J[2 * (12 + 4)]; | 
 |   ASSERT_TRUE( | 
 |       (SymmetricDiff<Projective, double, 2, 12 + 4>(b, PX, del, fd_x, fd_J))); | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     ASSERT_NEAR(fd_x[i], b_x[i], tol); | 
 |   } | 
 |  | 
 |   // Use automatic differentiation to compute the Jacobian. | 
 |   double ad_x1[2]; | 
 |   double J_PX[2 * (12 + 4)]; | 
 |   { | 
 |     double* parameters[] = {PX}; | 
 |     double* jacobians[] = {J_PX}; | 
 |     ASSERT_TRUE((AutoDifferentiate<2, StaticParameterDims<12 + 4>>( | 
 |         b, parameters, 2, ad_x1, jacobians))); | 
 |  | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       ASSERT_NEAR(ad_x1[i], b_x[i], tol); | 
 |     } | 
 |   } | 
 |  | 
 |   // Use automatic differentiation (again), with two arguments. | 
 |   { | 
 |     double ad_x2[2]; | 
 |     double J_P[2 * 12]; | 
 |     double J_X[2 * 4]; | 
 |     double* parameters[] = {P, X}; | 
 |     double* jacobians[] = {J_P, J_X}; | 
 |     ASSERT_TRUE((AutoDifferentiate<2, StaticParameterDims<12, 4>>( | 
 |         b, parameters, 2, ad_x2, jacobians))); | 
 |  | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       ASSERT_NEAR(ad_x2[i], b_x[i], tol); | 
 |     } | 
 |  | 
 |     // Now compare the jacobians we got. | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 12 + 4; ++j) { | 
 |         ASSERT_NEAR(J_PX[(12 + 4) * i + j], fd_J[(12 + 4) * i + j], err); | 
 |       } | 
 |  | 
 |       for (int j = 0; j < 12; ++j) { | 
 |         ASSERT_NEAR(J_PX[(12 + 4) * i + j], J_P[12 * i + j], tol); | 
 |       } | 
 |       for (int j = 0; j < 4; ++j) { | 
 |         ASSERT_NEAR(J_PX[(12 + 4) * i + 12 + j], J_X[4 * i + j], tol); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Object to implement the projection by a calibrated camera. | 
 | struct Metric { | 
 |   // The mapping is | 
 |   // | 
 |   //   q, c, X -> x = dehomg(R(q) (X - c)) | 
 |   // | 
 |   // where q is a quaternion and c is the center of projection. | 
 |   // | 
 |   // This function takes three input vectors. | 
 |   template <typename A> | 
 |   bool operator()(A const q[4], A const c[3], A const X[3], A x[2]) const { | 
 |     A R[3 * 3]; | 
 |     QuaternionToScaledRotation(q, R); | 
 |  | 
 |     // Convert the quaternion mapping all the way to projective matrix. | 
 |     A P[3 * 4]; | 
 |  | 
 |     // Set P(:, 1:3) = R | 
 |     for (int i = 0; i < 3; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         RowMajorAccess(P, 3, 4, i, j) = RowMajorAccess(R, 3, 3, i, j); | 
 |       } | 
 |     } | 
 |  | 
 |     // Set P(:, 4) = - R c | 
 |     for (int i = 0; i < 3; ++i) { | 
 |       RowMajorAccess(P, 3, 4, i, 3) = -(RowMajorAccess(R, 3, 3, i, 0) * c[0] + | 
 |                                         RowMajorAccess(R, 3, 3, i, 1) * c[1] + | 
 |                                         RowMajorAccess(R, 3, 3, i, 2) * c[2]); | 
 |     } | 
 |  | 
 |     A X1[4] = {X[0], X[1], X[2], A(1)}; | 
 |     Projective p; | 
 |     return p(P, X1, x); | 
 |   } | 
 |  | 
 |   // A version that takes a single vector. | 
 |   template <typename A> | 
 |   bool operator()(A const q_c_X[4 + 3 + 3], A x[2]) const { | 
 |     return operator()(q_c_X, q_c_X + 4, q_c_X + 4 + 3, x); | 
 |   } | 
 | }; | 
 |  | 
 | // This test is similar in structure to the previous one. | 
 | TEST(AutoDiff, Metric) { | 
 |   srand(5); | 
 |   double const tol = 1e-10;  // floating-point tolerance. | 
 |   double const del = 1e-4;   // finite-difference step. | 
 |   double const err = 1e-5;   // finite-difference tolerance. | 
 |  | 
 |   Metric b; | 
 |  | 
 |   // Make random parameter vector. | 
 |   double qcX[4 + 3 + 3]; | 
 |   for (double& qcX_i : qcX) qcX_i = RandDouble(); | 
 |  | 
 |   // Handy names. | 
 |   double* q = qcX; | 
 |   double* c = qcX + 4; | 
 |   double* X = qcX + 4 + 3; | 
 |  | 
 |   // Compute projection, b_x. | 
 |   double b_x[2]; | 
 |   ASSERT_TRUE(b(q, c, X, b_x)); | 
 |  | 
 |   // Finite differencing estimate of Jacobian. | 
 |   double fd_x[2]; | 
 |   double fd_J[2 * (4 + 3 + 3)]; | 
 |   ASSERT_TRUE( | 
 |       (SymmetricDiff<Metric, double, 2, 4 + 3 + 3>(b, qcX, del, fd_x, fd_J))); | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     ASSERT_NEAR(fd_x[i], b_x[i], tol); | 
 |   } | 
 |  | 
 |   // Automatic differentiation. | 
 |   double ad_x[2]; | 
 |   double J_q[2 * 4]; | 
 |   double J_c[2 * 3]; | 
 |   double J_X[2 * 3]; | 
 |   double* parameters[] = {q, c, X}; | 
 |   double* jacobians[] = {J_q, J_c, J_X}; | 
 |   ASSERT_TRUE((AutoDifferentiate<2, StaticParameterDims<4, 3, 3>>( | 
 |       b, parameters, 2, ad_x, jacobians))); | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     ASSERT_NEAR(ad_x[i], b_x[i], tol); | 
 |   } | 
 |  | 
 |   // Compare the pieces. | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 4; ++j) { | 
 |       ASSERT_NEAR(J_q[4 * i + j], fd_J[(4 + 3 + 3) * i + j], err); | 
 |     } | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       ASSERT_NEAR(J_c[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4], err); | 
 |     } | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       ASSERT_NEAR(J_X[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4 + 3], err); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | struct VaryingResidualFunctor { | 
 |   template <typename T> | 
 |   bool operator()(const T x[2], T* y) const { | 
 |     for (int i = 0; i < num_residuals; ++i) { | 
 |       y[i] = T(i) * x[0] * x[1] * x[1]; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   int num_residuals; | 
 | }; | 
 |  | 
 | TEST(AutoDiff, VaryingNumberOfResidualsForOneCostFunctorType) { | 
 |   double x[2] = {1.0, 5.5}; | 
 |   double* parameters[] = {x}; | 
 |   const int kMaxResiduals = 10; | 
 |   double J_x[2 * kMaxResiduals]; | 
 |   double residuals[kMaxResiduals]; | 
 |   double* jacobians[] = {J_x}; | 
 |  | 
 |   // Use a single functor, but tweak it to produce different numbers of | 
 |   // residuals. | 
 |   VaryingResidualFunctor functor; | 
 |  | 
 |   for (int num_residuals = 1; num_residuals < kMaxResiduals; ++num_residuals) { | 
 |     // Tweak the number of residuals to produce. | 
 |     functor.num_residuals = num_residuals; | 
 |  | 
 |     // Run autodiff with the new number of residuals. | 
 |     ASSERT_TRUE((AutoDifferentiate<DYNAMIC, StaticParameterDims<2>>( | 
 |         functor, parameters, num_residuals, residuals, jacobians))); | 
 |  | 
 |     const double kTolerance = 1e-14; | 
 |     for (int i = 0; i < num_residuals; ++i) { | 
 |       EXPECT_NEAR(J_x[2 * i + 0], i * x[1] * x[1], kTolerance) << "i: " << i; | 
 |       EXPECT_NEAR(J_x[2 * i + 1], 2 * i * x[0] * x[1], kTolerance) | 
 |           << "i: " << i; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | struct Residual1Param { | 
 |   template <typename T> | 
 |   bool operator()(const T* x0, T* y) const { | 
 |     y[0] = *x0; | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct Residual2Param { | 
 |   template <typename T> | 
 |   bool operator()(const T* x0, const T* x1, T* y) const { | 
 |     y[0] = *x0 + pow(*x1, 2); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct Residual3Param { | 
 |   template <typename T> | 
 |   bool operator()(const T* x0, const T* x1, const T* x2, T* y) const { | 
 |     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct Residual4Param { | 
 |   template <typename T> | 
 |   bool operator()( | 
 |       const T* x0, const T* x1, const T* x2, const T* x3, T* y) const { | 
 |     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct Residual5Param { | 
 |   template <typename T> | 
 |   bool operator()(const T* x0, | 
 |                   const T* x1, | 
 |                   const T* x2, | 
 |                   const T* x3, | 
 |                   const T* x4, | 
 |                   T* y) const { | 
 |     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct Residual6Param { | 
 |   template <typename T> | 
 |   bool operator()(const T* x0, | 
 |                   const T* x1, | 
 |                   const T* x2, | 
 |                   const T* x3, | 
 |                   const T* x4, | 
 |                   const T* x5, | 
 |                   T* y) const { | 
 |     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + | 
 |            pow(*x5, 6); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct Residual7Param { | 
 |   template <typename T> | 
 |   bool operator()(const T* x0, | 
 |                   const T* x1, | 
 |                   const T* x2, | 
 |                   const T* x3, | 
 |                   const T* x4, | 
 |                   const T* x5, | 
 |                   const T* x6, | 
 |                   T* y) const { | 
 |     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + | 
 |            pow(*x5, 6) + pow(*x6, 7); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct Residual8Param { | 
 |   template <typename T> | 
 |   bool operator()(const T* x0, | 
 |                   const T* x1, | 
 |                   const T* x2, | 
 |                   const T* x3, | 
 |                   const T* x4, | 
 |                   const T* x5, | 
 |                   const T* x6, | 
 |                   const T* x7, | 
 |                   T* y) const { | 
 |     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + | 
 |            pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct Residual9Param { | 
 |   template <typename T> | 
 |   bool operator()(const T* x0, | 
 |                   const T* x1, | 
 |                   const T* x2, | 
 |                   const T* x3, | 
 |                   const T* x4, | 
 |                   const T* x5, | 
 |                   const T* x6, | 
 |                   const T* x7, | 
 |                   const T* x8, | 
 |                   T* y) const { | 
 |     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + | 
 |            pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct Residual10Param { | 
 |   template <typename T> | 
 |   bool operator()(const T* x0, | 
 |                   const T* x1, | 
 |                   const T* x2, | 
 |                   const T* x3, | 
 |                   const T* x4, | 
 |                   const T* x5, | 
 |                   const T* x6, | 
 |                   const T* x7, | 
 |                   const T* x8, | 
 |                   const T* x9, | 
 |                   T* y) const { | 
 |     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + | 
 |            pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9) + pow(*x9, 10); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | TEST(AutoDiff, VariadicAutoDiff) { | 
 |   double x[10]; | 
 |   double residual = 0; | 
 |   double* parameters[10]; | 
 |   double jacobian_values[10]; | 
 |   double* jacobians[10]; | 
 |  | 
 |   for (int i = 0; i < 10; ++i) { | 
 |     x[i] = 2.0; | 
 |     parameters[i] = x + i; | 
 |     jacobians[i] = jacobian_values + i; | 
 |   } | 
 |  | 
 |   { | 
 |     Residual1Param functor; | 
 |     int num_variables = 1; | 
 |     EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1>>( | 
 |         functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Residual2Param functor; | 
 |     int num_variables = 2; | 
 |     EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1>>( | 
 |         functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Residual3Param functor; | 
 |     int num_variables = 3; | 
 |     EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1>>( | 
 |         functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Residual4Param functor; | 
 |     int num_variables = 4; | 
 |     EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1>>( | 
 |         functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Residual5Param functor; | 
 |     int num_variables = 5; | 
 |     EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1>>( | 
 |         functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Residual6Param functor; | 
 |     int num_variables = 6; | 
 |     EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1>>( | 
 |         functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Residual7Param functor; | 
 |     int num_variables = 7; | 
 |     EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1>>( | 
 |         functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Residual8Param functor; | 
 |     int num_variables = 8; | 
 |     EXPECT_TRUE( | 
 |         (AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1, 1>>( | 
 |             functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Residual9Param functor; | 
 |     int num_variables = 9; | 
 |     EXPECT_TRUE( | 
 |         (AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1, 1, 1>>( | 
 |             functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Residual10Param functor; | 
 |     int num_variables = 10; | 
 |     EXPECT_TRUE(( | 
 |         AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1, 1, 1, 1>>( | 
 |             functor, parameters, 1, &residual, jacobians))); | 
 |     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // This is fragile test that triggers the alignment bug on | 
 | // i686-apple-darwin10-llvm-g++-4.2 (GCC) 4.2.1. It is quite possible, | 
 | // that other combinations of operating system + compiler will | 
 | // re-arrange the operations in this test. | 
 | // | 
 | // But this is the best (and only) way we know of to trigger this | 
 | // problem for now. A more robust solution that guarantees the | 
 | // alignment of Eigen types used for automatic differentiation would | 
 | // be nice. | 
 | TEST(AutoDiff, AlignedAllocationTest) { | 
 |   // This int is needed to allocate 16 bits on the stack, so that the | 
 |   // next allocation is not aligned by default. | 
 |   char y = 0; | 
 |  | 
 |   // This is needed to prevent the compiler from optimizing y out of | 
 |   // this function. | 
 |   y += 1; | 
 |  | 
 |   using JetT = Jet<double, 2>; | 
 |   FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(3); | 
 |  | 
 |   // Need this to makes sure that x does not get optimized out. | 
 |   x[0] = x[0] + JetT(1.0); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |