| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/dynamic_sparse_normal_cholesky_solver.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstring> | 
 | #include <ctime> | 
 | #include <memory> | 
 | #include <sstream> | 
 | #include <utility> | 
 |  | 
 | #include "Eigen/SparseCore" | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/cxsparse.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/suitesparse.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/wall_time.h" | 
 |  | 
 | #ifdef CERES_USE_EIGEN_SPARSE | 
 | #include "Eigen/SparseCholesky" | 
 | #endif | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | DynamicSparseNormalCholeskySolver::DynamicSparseNormalCholeskySolver( | 
 |     LinearSolver::Options options) | 
 |     : options_(std::move(options)) {} | 
 |  | 
 | LinearSolver::Summary DynamicSparseNormalCholeskySolver::SolveImpl( | 
 |     CompressedRowSparseMatrix* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   const int num_cols = A->num_cols(); | 
 |   VectorRef(x, num_cols).setZero(); | 
 |   A->LeftMultiply(b, x); | 
 |  | 
 |   if (per_solve_options.D != nullptr) { | 
 |     // Temporarily append a diagonal block to the A matrix, but undo | 
 |     // it before returning the matrix to the user. | 
 |     std::unique_ptr<CompressedRowSparseMatrix> regularizer; | 
 |     if (!A->col_blocks().empty()) { | 
 |       regularizer = CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
 |           per_solve_options.D, A->col_blocks()); | 
 |     } else { | 
 |       regularizer = std::make_unique<CompressedRowSparseMatrix>( | 
 |           per_solve_options.D, num_cols); | 
 |     } | 
 |     A->AppendRows(*regularizer); | 
 |   } | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   switch (options_.sparse_linear_algebra_library_type) { | 
 |     case SUITE_SPARSE: | 
 |       summary = SolveImplUsingSuiteSparse(A, x); | 
 |       break; | 
 |     case CX_SPARSE: | 
 |       summary = SolveImplUsingCXSparse(A, x); | 
 |       break; | 
 |     case EIGEN_SPARSE: | 
 |       summary = SolveImplUsingEigen(A, x); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unsupported sparse linear algebra library for " | 
 |                  << "dynamic sparsity: " | 
 |                  << SparseLinearAlgebraLibraryTypeToString( | 
 |                         options_.sparse_linear_algebra_library_type); | 
 |   } | 
 |  | 
 |   if (per_solve_options.D != nullptr) { | 
 |     A->DeleteRows(num_cols); | 
 |   } | 
 |  | 
 |   return summary; | 
 | } | 
 |  | 
 | LinearSolver::Summary DynamicSparseNormalCholeskySolver::SolveImplUsingEigen( | 
 |     CompressedRowSparseMatrix* A, double* rhs_and_solution) { | 
 | #ifndef CERES_USE_EIGEN_SPARSE | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 0; | 
 |   summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |   summary.message = | 
 |       "SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE " | 
 |       "because Ceres was not built with support for " | 
 |       "Eigen's SimplicialLDLT decomposition. " | 
 |       "This requires enabling building with -DEIGENSPARSE=ON."; | 
 |   return summary; | 
 |  | 
 | #else | 
 |  | 
 |   EventLogger event_logger("DynamicSparseNormalCholeskySolver::Eigen::Solve"); | 
 |  | 
 |   Eigen::Map<Eigen::SparseMatrix<double, Eigen::RowMajor>> a( | 
 |       A->num_rows(), | 
 |       A->num_cols(), | 
 |       A->num_nonzeros(), | 
 |       A->mutable_rows(), | 
 |       A->mutable_cols(), | 
 |       A->mutable_values()); | 
 |  | 
 |   Eigen::SparseMatrix<double> lhs = a.transpose() * a; | 
 |   Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>> solver; | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |   summary.message = "Success."; | 
 |  | 
 |   solver.analyzePattern(lhs); | 
 |   if (VLOG_IS_ON(2)) { | 
 |     std::stringstream ss; | 
 |     solver.dumpMemory(ss); | 
 |     VLOG(2) << "Symbolic Analysis\n" << ss.str(); | 
 |   } | 
 |  | 
 |   event_logger.AddEvent("Analyze"); | 
 |   if (solver.info() != Eigen::Success) { | 
 |     summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |     summary.message = "Eigen failure. Unable to find symbolic factorization."; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   solver.factorize(lhs); | 
 |   event_logger.AddEvent("Factorize"); | 
 |   if (solver.info() != Eigen::Success) { | 
 |     summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |     summary.message = "Eigen failure. Unable to find numeric factorization."; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   const Vector rhs = VectorRef(rhs_and_solution, lhs.cols()); | 
 |   VectorRef(rhs_and_solution, lhs.cols()) = solver.solve(rhs); | 
 |   event_logger.AddEvent("Solve"); | 
 |   if (solver.info() != Eigen::Success) { | 
 |     summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |     summary.message = "Eigen failure. Unable to do triangular solve."; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   return summary; | 
 | #endif  // CERES_USE_EIGEN_SPARSE | 
 | } | 
 |  | 
 | LinearSolver::Summary DynamicSparseNormalCholeskySolver::SolveImplUsingCXSparse( | 
 |     CompressedRowSparseMatrix* A, double* rhs_and_solution) { | 
 | #ifdef CERES_NO_CXSPARSE | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 0; | 
 |   summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |   summary.message = | 
 |       "SPARSE_NORMAL_CHOLESKY cannot be used with CX_SPARSE " | 
 |       "because Ceres was not built with support for CXSparse. " | 
 |       "This requires enabling building with -DCXSPARSE=ON."; | 
 |  | 
 |   return summary; | 
 |  | 
 | #else | 
 |   EventLogger event_logger( | 
 |       "DynamicSparseNormalCholeskySolver::CXSparse::Solve"); | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |   summary.message = "Success."; | 
 |  | 
 |   CXSparse cxsparse; | 
 |  | 
 |   // Wrap the augmented Jacobian in a compressed sparse column matrix. | 
 |   cs_di a_transpose = cxsparse.CreateSparseMatrixTransposeView(A); | 
 |  | 
 |   // Compute the normal equations. J'J delta = J'f and solve them | 
 |   // using a sparse Cholesky factorization. Notice that when compared | 
 |   // to SuiteSparse we have to explicitly compute the transpose of Jt, | 
 |   // and then the normal equations before they can be | 
 |   // factorized. CHOLMOD/SuiteSparse on the other hand can just work | 
 |   // off of Jt to compute the Cholesky factorization of the normal | 
 |   // equations. | 
 |   cs_di* a = cxsparse.TransposeMatrix(&a_transpose); | 
 |   cs_di* lhs = cxsparse.MatrixMatrixMultiply(&a_transpose, a); | 
 |   cxsparse.Free(a); | 
 |   event_logger.AddEvent("NormalEquations"); | 
 |  | 
 |   if (!cxsparse.SolveCholesky(lhs, rhs_and_solution)) { | 
 |     summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |     summary.message = "CXSparse::SolveCholesky failed"; | 
 |   } | 
 |   event_logger.AddEvent("Solve"); | 
 |  | 
 |   cxsparse.Free(lhs); | 
 |   event_logger.AddEvent("TearDown"); | 
 |   return summary; | 
 | #endif | 
 | } | 
 |  | 
 | LinearSolver::Summary | 
 | DynamicSparseNormalCholeskySolver::SolveImplUsingSuiteSparse( | 
 |     CompressedRowSparseMatrix* A, double* rhs_and_solution) { | 
 | #ifdef CERES_NO_SUITESPARSE | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 0; | 
 |   summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |   summary.message = | 
 |       "SPARSE_NORMAL_CHOLESKY cannot be used with SUITE_SPARSE " | 
 |       "because Ceres was not built with support for SuiteSparse. " | 
 |       "This requires enabling building with -DSUITESPARSE=ON."; | 
 |   return summary; | 
 |  | 
 | #else | 
 |  | 
 |   EventLogger event_logger( | 
 |       "DynamicSparseNormalCholeskySolver::SuiteSparse::Solve"); | 
 |   LinearSolver::Summary summary; | 
 |   summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |   summary.num_iterations = 1; | 
 |   summary.message = "Success."; | 
 |  | 
 |   SuiteSparse ss; | 
 |   const int num_cols = A->num_cols(); | 
 |   cholmod_sparse lhs = ss.CreateSparseMatrixTransposeView(A); | 
 |   event_logger.AddEvent("Setup"); | 
 |   cholmod_factor* factor = ss.AnalyzeCholesky(&lhs, &summary.message); | 
 |   event_logger.AddEvent("Analysis"); | 
 |  | 
 |   if (factor == nullptr) { | 
 |     summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   summary.termination_type = ss.Cholesky(&lhs, factor, &summary.message); | 
 |   if (summary.termination_type == LINEAR_SOLVER_SUCCESS) { | 
 |     cholmod_dense cholmod_rhs = | 
 |         ss.CreateDenseVectorView(rhs_and_solution, num_cols); | 
 |     cholmod_dense* solution = ss.Solve(factor, &cholmod_rhs, &summary.message); | 
 |     event_logger.AddEvent("Solve"); | 
 |     if (solution != nullptr) { | 
 |       memcpy( | 
 |           rhs_and_solution, solution->x, num_cols * sizeof(*rhs_and_solution)); | 
 |       ss.Free(solution); | 
 |     } else { | 
 |       summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |     } | 
 |   } | 
 |  | 
 |   ss.Free(factor); | 
 |   event_logger.AddEvent("Teardown"); | 
 |   return summary; | 
 |  | 
 | #endif | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |