|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2017 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/eigensparse.h" | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #ifdef CERES_USE_EIGEN_SPARSE | 
|  |  | 
|  | #include <sstream> | 
|  |  | 
|  | #include "Eigen/SparseCholesky" | 
|  | #include "Eigen/SparseCore" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/linear_solver.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // TODO(sameeragarwal): Use enable_if to clean up the implementations | 
|  | // for when Scalar == double. | 
|  | template <typename Solver> | 
|  | class EigenSparseCholeskyTemplate final : public SparseCholesky { | 
|  | public: | 
|  | EigenSparseCholeskyTemplate() = default; | 
|  | CompressedRowSparseMatrix::StorageType StorageType() const final { | 
|  | return CompressedRowSparseMatrix::LOWER_TRIANGULAR; | 
|  | } | 
|  |  | 
|  | LinearSolverTerminationType Factorize( | 
|  | const Eigen::SparseMatrix<typename Solver::Scalar>& lhs, | 
|  | std::string* message) { | 
|  | if (!analyzed_) { | 
|  | solver_.analyzePattern(lhs); | 
|  |  | 
|  | if (VLOG_IS_ON(2)) { | 
|  | std::stringstream ss; | 
|  | solver_.dumpMemory(ss); | 
|  | VLOG(2) << "Symbolic Analysis\n" << ss.str(); | 
|  | } | 
|  |  | 
|  | if (solver_.info() != Eigen::Success) { | 
|  | *message = "Eigen failure. Unable to find symbolic factorization."; | 
|  | return LINEAR_SOLVER_FATAL_ERROR; | 
|  | } | 
|  |  | 
|  | analyzed_ = true; | 
|  | } | 
|  |  | 
|  | solver_.factorize(lhs); | 
|  | if (solver_.info() != Eigen::Success) { | 
|  | *message = "Eigen failure. Unable to find numeric factorization."; | 
|  | return LINEAR_SOLVER_FAILURE; | 
|  | } | 
|  | return LINEAR_SOLVER_SUCCESS; | 
|  | } | 
|  |  | 
|  | LinearSolverTerminationType Solve(const double* rhs_ptr, | 
|  | double* solution_ptr, | 
|  | std::string* message) override { | 
|  | CHECK(analyzed_) << "Solve called without a call to Factorize first."; | 
|  |  | 
|  | scalar_rhs_ = ConstVectorRef(rhs_ptr, solver_.cols()) | 
|  | .template cast<typename Solver::Scalar>(); | 
|  |  | 
|  | // The two casts are needed if the Scalar in this class is not | 
|  | // double. For code simplicity we are going to assume that Eigen | 
|  | // is smart enough to figure out that casting a double Vector to a | 
|  | // double Vector is a straight copy. If this turns into a | 
|  | // performance bottleneck (unlikely), we can revisit this. | 
|  | scalar_solution_ = solver_.solve(scalar_rhs_); | 
|  | VectorRef(solution_ptr, solver_.cols()) = | 
|  | scalar_solution_.template cast<double>(); | 
|  |  | 
|  | if (solver_.info() != Eigen::Success) { | 
|  | *message = "Eigen failure. Unable to do triangular solve."; | 
|  | return LINEAR_SOLVER_FAILURE; | 
|  | } | 
|  | return LINEAR_SOLVER_SUCCESS; | 
|  | } | 
|  |  | 
|  | LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs, | 
|  | std::string* message) final { | 
|  | CHECK_EQ(lhs->storage_type(), StorageType()); | 
|  |  | 
|  | typename Solver::Scalar* values_ptr = nullptr; | 
|  | if (std::is_same<typename Solver::Scalar, double>::value) { | 
|  | values_ptr = | 
|  | reinterpret_cast<typename Solver::Scalar*>(lhs->mutable_values()); | 
|  | } else { | 
|  | // In the case where the scalar used in this class is not | 
|  | // double. In that case, make a copy of the values array in the | 
|  | // CompressedRowSparseMatrix and cast it to Scalar along the way. | 
|  | values_ = ConstVectorRef(lhs->values(), lhs->num_nonzeros()) | 
|  | .cast<typename Solver::Scalar>(); | 
|  | values_ptr = values_.data(); | 
|  | } | 
|  |  | 
|  | Eigen::Map<Eigen::SparseMatrix<typename Solver::Scalar, Eigen::ColMajor>> | 
|  | eigen_lhs(lhs->num_rows(), | 
|  | lhs->num_rows(), | 
|  | lhs->num_nonzeros(), | 
|  | lhs->mutable_rows(), | 
|  | lhs->mutable_cols(), | 
|  | values_ptr); | 
|  | return Factorize(eigen_lhs, message); | 
|  | } | 
|  |  | 
|  | private: | 
|  | Eigen::Matrix<typename Solver::Scalar, Eigen::Dynamic, 1> values_, | 
|  | scalar_rhs_, scalar_solution_; | 
|  | bool analyzed_{false}; | 
|  | Solver solver_; | 
|  | }; | 
|  |  | 
|  | std::unique_ptr<SparseCholesky> EigenSparseCholesky::Create( | 
|  | const OrderingType ordering_type) { | 
|  | using WithAMDOrdering = Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>, | 
|  | Eigen::Upper, | 
|  | Eigen::AMDOrdering<int>>; | 
|  | using WithNaturalOrdering = | 
|  | Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>, | 
|  | Eigen::Upper, | 
|  | Eigen::NaturalOrdering<int>>; | 
|  |  | 
|  | if (ordering_type == AMD) { | 
|  | return std::make_unique<EigenSparseCholeskyTemplate<WithAMDOrdering>>(); | 
|  | } else { | 
|  | return std::make_unique<EigenSparseCholeskyTemplate<WithNaturalOrdering>>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | EigenSparseCholesky::~EigenSparseCholesky() = default; | 
|  |  | 
|  | std::unique_ptr<SparseCholesky> FloatEigenSparseCholesky::Create( | 
|  | const OrderingType ordering_type) { | 
|  | using WithAMDOrdering = Eigen::SimplicialLDLT<Eigen::SparseMatrix<float>, | 
|  | Eigen::Upper, | 
|  | Eigen::AMDOrdering<int>>; | 
|  | using WithNaturalOrdering = | 
|  | Eigen::SimplicialLDLT<Eigen::SparseMatrix<float>, | 
|  | Eigen::Upper, | 
|  | Eigen::NaturalOrdering<int>>; | 
|  | if (ordering_type == AMD) { | 
|  | return std::make_unique<EigenSparseCholeskyTemplate<WithAMDOrdering>>(); | 
|  | } else { | 
|  | return std::make_unique<EigenSparseCholeskyTemplate<WithNaturalOrdering>>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | FloatEigenSparseCholesky::~FloatEigenSparseCholesky() = default; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_USE_EIGEN_SPARSE |