|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/parameter_block_ordering.h" | 
|  |  | 
|  | #include <cstddef> | 
|  | #include <memory> | 
|  | #include <unordered_set> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/graph.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  | #include "ceres/stl_util.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using VertexSet = std::unordered_set<ParameterBlock*>; | 
|  |  | 
|  | template <int M, int... Ns> | 
|  | class DummyCostFunction : public SizedCostFunction<M, Ns...> { | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const final { | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class SchurOrderingTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() final { | 
|  | // The explicit calls to AddParameterBlock are necessary because | 
|  | // the below tests depend on the specific numbering of the | 
|  | // parameter blocks. | 
|  | problem_.AddParameterBlock(x_, 3); | 
|  | problem_.AddParameterBlock(y_, 4); | 
|  | problem_.AddParameterBlock(z_, 5); | 
|  | problem_.AddParameterBlock(w_, 6); | 
|  |  | 
|  | problem_.AddResidualBlock(new DummyCostFunction<2, 3>, nullptr, x_); | 
|  | problem_.AddResidualBlock(new DummyCostFunction<6, 5, 4>, nullptr, z_, y_); | 
|  | problem_.AddResidualBlock(new DummyCostFunction<3, 3, 5>, nullptr, x_, z_); | 
|  | problem_.AddResidualBlock(new DummyCostFunction<7, 5, 3>, nullptr, z_, x_); | 
|  | problem_.AddResidualBlock( | 
|  | new DummyCostFunction<1, 5, 3, 6>, nullptr, z_, x_, w_); | 
|  | } | 
|  |  | 
|  | ProblemImpl problem_; | 
|  | double x_[3], y_[4], z_[5], w_[6]; | 
|  | }; | 
|  |  | 
|  | TEST_F(SchurOrderingTest, NoFixed) { | 
|  | const Program& program = problem_.program(); | 
|  | const std::vector<ParameterBlock*>& parameter_blocks = | 
|  | program.parameter_blocks(); | 
|  | auto graph = CreateHessianGraph(program); | 
|  |  | 
|  | const VertexSet& vertices = graph->vertices(); | 
|  | EXPECT_EQ(vertices.size(), 4); | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | EXPECT_TRUE(vertices.find(parameter_blocks[i]) != vertices.end()); | 
|  | } | 
|  |  | 
|  | { | 
|  | const VertexSet& neighbors = graph->Neighbors(parameter_blocks[0]); | 
|  | EXPECT_EQ(neighbors.size(), 2); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[3]) != neighbors.end()); | 
|  | } | 
|  |  | 
|  | { | 
|  | const VertexSet& neighbors = graph->Neighbors(parameter_blocks[1]); | 
|  | EXPECT_EQ(neighbors.size(), 1); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
|  | } | 
|  |  | 
|  | { | 
|  | const VertexSet& neighbors = graph->Neighbors(parameter_blocks[2]); | 
|  | EXPECT_EQ(neighbors.size(), 3); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[0]) != neighbors.end()); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[1]) != neighbors.end()); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[3]) != neighbors.end()); | 
|  | } | 
|  |  | 
|  | { | 
|  | const VertexSet& neighbors = graph->Neighbors(parameter_blocks[3]); | 
|  | EXPECT_EQ(neighbors.size(), 2); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[0]) != neighbors.end()); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SchurOrderingTest, AllFixed) { | 
|  | problem_.SetParameterBlockConstant(x_); | 
|  | problem_.SetParameterBlockConstant(y_); | 
|  | problem_.SetParameterBlockConstant(z_); | 
|  | problem_.SetParameterBlockConstant(w_); | 
|  |  | 
|  | const Program& program = problem_.program(); | 
|  | auto graph = CreateHessianGraph(program); | 
|  | EXPECT_EQ(graph->vertices().size(), 0); | 
|  | } | 
|  |  | 
|  | TEST_F(SchurOrderingTest, OneFixed) { | 
|  | problem_.SetParameterBlockConstant(x_); | 
|  |  | 
|  | const Program& program = problem_.program(); | 
|  | const std::vector<ParameterBlock*>& parameter_blocks = | 
|  | program.parameter_blocks(); | 
|  | auto graph = CreateHessianGraph(program); | 
|  |  | 
|  | const VertexSet& vertices = graph->vertices(); | 
|  |  | 
|  | EXPECT_EQ(vertices.size(), 3); | 
|  | EXPECT_TRUE(vertices.find(parameter_blocks[0]) == vertices.end()); | 
|  |  | 
|  | for (int i = 1; i < 3; ++i) { | 
|  | EXPECT_TRUE(vertices.find(parameter_blocks[i]) != vertices.end()); | 
|  | } | 
|  |  | 
|  | { | 
|  | const VertexSet& neighbors = graph->Neighbors(parameter_blocks[1]); | 
|  | EXPECT_EQ(neighbors.size(), 1); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
|  | } | 
|  |  | 
|  | { | 
|  | const VertexSet& neighbors = graph->Neighbors(parameter_blocks[2]); | 
|  | EXPECT_EQ(neighbors.size(), 2); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[1]) != neighbors.end()); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[3]) != neighbors.end()); | 
|  | } | 
|  |  | 
|  | { | 
|  | const VertexSet& neighbors = graph->Neighbors(parameter_blocks[3]); | 
|  | EXPECT_EQ(neighbors.size(), 1); | 
|  | EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
|  | } | 
|  |  | 
|  | // The constant parameter block is at the end. | 
|  | std::vector<ParameterBlock*> ordering; | 
|  | ComputeSchurOrdering(program, &ordering); | 
|  | EXPECT_EQ(ordering.back(), parameter_blocks[0]); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |