|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: moll.markus@arcor.de (Markus Moll) | 
|  | //         sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/polynomial.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <cstddef> | 
|  | #include <limits> | 
|  |  | 
|  | #include "ceres/function_sample.h" | 
|  | #include "ceres/test_util.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using std::vector; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // For IEEE-754 doubles, machine precision is about 2e-16. | 
|  | const double kEpsilon = 1e-13; | 
|  | const double kEpsilonLoose = 1e-9; | 
|  |  | 
|  | // Return the constant polynomial p(x) = 1.23. | 
|  | Vector ConstantPolynomial(double value) { | 
|  | Vector poly(1); | 
|  | poly(0) = value; | 
|  | return poly; | 
|  | } | 
|  |  | 
|  | // Return the polynomial p(x) = poly(x) * (x - root). | 
|  | Vector AddRealRoot(const Vector& poly, double root) { | 
|  | Vector poly2(poly.size() + 1); | 
|  | poly2.setZero(); | 
|  | poly2.head(poly.size()) += poly; | 
|  | poly2.tail(poly.size()) -= root * poly; | 
|  | return poly2; | 
|  | } | 
|  |  | 
|  | // Return the polynomial | 
|  | // p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i). | 
|  | Vector AddComplexRootPair(const Vector& poly, double real, double imag) { | 
|  | Vector poly2(poly.size() + 2); | 
|  | poly2.setZero(); | 
|  | // Multiply poly by x^2 - 2real + abs(real,imag)^2 | 
|  | poly2.head(poly.size()) += poly; | 
|  | poly2.segment(1, poly.size()) -= 2 * real * poly; | 
|  | poly2.tail(poly.size()) += (real * real + imag * imag) * poly; | 
|  | return poly2; | 
|  | } | 
|  |  | 
|  | // Sort the entries in a vector. | 
|  | // Needed because the roots are not returned in sorted order. | 
|  | Vector SortVector(const Vector& in) { | 
|  | Vector out(in); | 
|  | std::sort(out.data(), out.data() + out.size()); | 
|  | return out; | 
|  | } | 
|  |  | 
|  | // Run a test with the polynomial defined by the N real roots in roots_real. | 
|  | // If use_real is false, nullptr is passed as the real argument to | 
|  | // FindPolynomialRoots. If use_imaginary is false, nullptr is passed as the | 
|  | // imaginary argument to FindPolynomialRoots. | 
|  | template <int N> | 
|  | void RunPolynomialTestRealRoots(const double (&real_roots)[N], | 
|  | bool use_real, | 
|  | bool use_imaginary, | 
|  | double epsilon) { | 
|  | Vector real; | 
|  | Vector imaginary; | 
|  | Vector poly = ConstantPolynomial(1.23); | 
|  | for (int i = 0; i < N; ++i) { | 
|  | poly = AddRealRoot(poly, real_roots[i]); | 
|  | } | 
|  | Vector* const real_ptr = use_real ? &real : nullptr; | 
|  | Vector* const imaginary_ptr = use_imaginary ? &imaginary : nullptr; | 
|  | bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr); | 
|  |  | 
|  | EXPECT_EQ(success, true); | 
|  | if (use_real) { | 
|  | EXPECT_EQ(real.size(), N); | 
|  | real = SortVector(real); | 
|  | ExpectArraysClose(N, real.data(), real_roots, epsilon); | 
|  | } | 
|  | if (use_imaginary) { | 
|  | EXPECT_EQ(imaginary.size(), N); | 
|  | const Vector zeros = Vector::Zero(N); | 
|  | ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon); | 
|  | } | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) { | 
|  | // Vector poly(0) is an ambiguous constructor call, so | 
|  | // use the constructor with explicit column count. | 
|  | Vector poly(0, 1); | 
|  | Vector real; | 
|  | Vector imag; | 
|  | bool success = FindPolynomialRoots(poly, &real, &imag); | 
|  |  | 
|  | EXPECT_EQ(success, false); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, ConstantPolynomialReturnsNoRoots) { | 
|  | Vector poly = ConstantPolynomial(1.23); | 
|  | Vector real; | 
|  | Vector imag; | 
|  | bool success = FindPolynomialRoots(poly, &real, &imag); | 
|  |  | 
|  | EXPECT_EQ(success, true); | 
|  | EXPECT_EQ(real.size(), 0); | 
|  | EXPECT_EQ(imag.size(), 0); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) { | 
|  | const double roots[1] = {42.42}; | 
|  | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) { | 
|  | const double roots[1] = {-42.42}; | 
|  | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) { | 
|  | const double roots[2] = {1.0, 42.42}; | 
|  | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuadraticPolynomialWithOneNegativeRootWorks) { | 
|  | const double roots[2] = {-42.42, 1.0}; | 
|  | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuadraticPolynomialWithTwoNegativeRootsWorks) { | 
|  | const double roots[2] = {-42.42, -1.0}; | 
|  | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuadraticPolynomialWithCloseRootsWorks) { | 
|  | const double roots[2] = {42.42, 42.43}; | 
|  | RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuadraticPolynomialWithComplexRootsWorks) { | 
|  | Vector real; | 
|  | Vector imag; | 
|  |  | 
|  | Vector poly = ConstantPolynomial(1.23); | 
|  | poly = AddComplexRootPair(poly, 42.42, 4.2); | 
|  | bool success = FindPolynomialRoots(poly, &real, &imag); | 
|  |  | 
|  | EXPECT_EQ(success, true); | 
|  | EXPECT_EQ(real.size(), 2); | 
|  | EXPECT_EQ(imag.size(), 2); | 
|  | ExpectClose(real(0), 42.42, kEpsilon); | 
|  | ExpectClose(real(1), 42.42, kEpsilon); | 
|  | ExpectClose(std::abs(imag(0)), 4.2, kEpsilon); | 
|  | ExpectClose(std::abs(imag(1)), 4.2, kEpsilon); | 
|  | ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuarticPolynomialWorks) { | 
|  | const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5}; | 
|  | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) { | 
|  | const double roots[4] = {1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5}; | 
|  | RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuarticPolynomialWithTwoZeroRootsWorks) { | 
|  | const double roots[4] = {-42.42, 0.0, 0.0, 42.42}; | 
|  | RunPolynomialTestRealRoots(roots, true, true, 2 * kEpsilonLoose); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuarticMonomialWorks) { | 
|  | const double roots[4] = {0.0, 0.0, 0.0, 0.0}; | 
|  | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, NullPointerAsImaginaryPartWorks) { | 
|  | const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5}; | 
|  | RunPolynomialTestRealRoots(roots, true, false, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, NullPointerAsRealPartWorks) { | 
|  | const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5}; | 
|  | RunPolynomialTestRealRoots(roots, false, true, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, BothOutputArgumentsNullWorks) { | 
|  | const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5}; | 
|  | RunPolynomialTestRealRoots(roots, false, false, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, DifferentiateConstantPolynomial) { | 
|  | // p(x) = 1; | 
|  | Vector polynomial(1); | 
|  | polynomial(0) = 1.0; | 
|  | const Vector derivative = DifferentiatePolynomial(polynomial); | 
|  | EXPECT_EQ(derivative.rows(), 1); | 
|  | EXPECT_EQ(derivative(0), 0); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, DifferentiateQuadraticPolynomial) { | 
|  | // p(x) = x^2 + 2x + 3; | 
|  | Vector polynomial(3); | 
|  | polynomial(0) = 1.0; | 
|  | polynomial(1) = 2.0; | 
|  | polynomial(2) = 3.0; | 
|  |  | 
|  | const Vector derivative = DifferentiatePolynomial(polynomial); | 
|  | EXPECT_EQ(derivative.rows(), 2); | 
|  | EXPECT_EQ(derivative(0), 2.0); | 
|  | EXPECT_EQ(derivative(1), 2.0); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, MinimizeConstantPolynomial) { | 
|  | // p(x) = 1; | 
|  | Vector polynomial(1); | 
|  | polynomial(0) = 1.0; | 
|  |  | 
|  | double optimal_x = 0.0; | 
|  | double optimal_value = 0.0; | 
|  | double min_x = 0.0; | 
|  | double max_x = 1.0; | 
|  | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
|  |  | 
|  | EXPECT_EQ(optimal_value, 1.0); | 
|  | EXPECT_LE(optimal_x, max_x); | 
|  | EXPECT_GE(optimal_x, min_x); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, MinimizeLinearPolynomial) { | 
|  | // p(x) = x - 2 | 
|  | Vector polynomial(2); | 
|  |  | 
|  | polynomial(0) = 1.0; | 
|  | polynomial(1) = 2.0; | 
|  |  | 
|  | double optimal_x = 0.0; | 
|  | double optimal_value = 0.0; | 
|  | double min_x = 0.0; | 
|  | double max_x = 1.0; | 
|  | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
|  |  | 
|  | EXPECT_EQ(optimal_x, 0.0); | 
|  | EXPECT_EQ(optimal_value, 2.0); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, MinimizeQuadraticPolynomial) { | 
|  | // p(x) = x^2 - 3 x + 2 | 
|  | // min_x = 3/2 | 
|  | // min_value = -1/4; | 
|  | Vector polynomial(3); | 
|  | polynomial(0) = 1.0; | 
|  | polynomial(1) = -3.0; | 
|  | polynomial(2) = 2.0; | 
|  |  | 
|  | double optimal_x = 0.0; | 
|  | double optimal_value = 0.0; | 
|  | double min_x = -2.0; | 
|  | double max_x = 2.0; | 
|  | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
|  | EXPECT_EQ(optimal_x, 3.0 / 2.0); | 
|  | EXPECT_EQ(optimal_value, -1.0 / 4.0); | 
|  |  | 
|  | min_x = -2.0; | 
|  | max_x = 1.0; | 
|  | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
|  | EXPECT_EQ(optimal_x, 1.0); | 
|  | EXPECT_EQ(optimal_value, 0.0); | 
|  |  | 
|  | min_x = 2.0; | 
|  | max_x = 3.0; | 
|  | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
|  | EXPECT_EQ(optimal_x, 2.0); | 
|  | EXPECT_EQ(optimal_value, 0.0); | 
|  | } | 
|  |  | 
|  | TEST(Polymomial, ConstantInterpolatingPolynomial) { | 
|  | // p(x) = 1.0 | 
|  | Vector true_polynomial(1); | 
|  | true_polynomial << 1.0; | 
|  |  | 
|  | vector<FunctionSample> samples; | 
|  | FunctionSample sample; | 
|  | sample.x = 1.0; | 
|  | sample.value = 1.0; | 
|  | sample.value_is_valid = true; | 
|  | samples.push_back(sample); | 
|  |  | 
|  | const Vector polynomial = FindInterpolatingPolynomial(samples); | 
|  | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, LinearInterpolatingPolynomial) { | 
|  | // p(x) = 2x - 1 | 
|  | Vector true_polynomial(2); | 
|  | true_polynomial << 2.0, -1.0; | 
|  |  | 
|  | vector<FunctionSample> samples; | 
|  | FunctionSample sample; | 
|  | sample.x = 1.0; | 
|  | sample.value = 1.0; | 
|  | sample.value_is_valid = true; | 
|  | sample.gradient = 2.0; | 
|  | sample.gradient_is_valid = true; | 
|  | samples.push_back(sample); | 
|  |  | 
|  | const Vector polynomial = FindInterpolatingPolynomial(samples); | 
|  | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, QuadraticInterpolatingPolynomial) { | 
|  | // p(x) = 2x^2 + 3x + 2 | 
|  | Vector true_polynomial(3); | 
|  | true_polynomial << 2.0, 3.0, 2.0; | 
|  |  | 
|  | vector<FunctionSample> samples; | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = 1.0; | 
|  | sample.value = 7.0; | 
|  | sample.value_is_valid = true; | 
|  | sample.gradient = 7.0; | 
|  | sample.gradient_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = -3.0; | 
|  | sample.value = 11.0; | 
|  | sample.value_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | Vector polynomial = FindInterpolatingPolynomial(samples); | 
|  | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, DeficientCubicInterpolatingPolynomial) { | 
|  | // p(x) = 2x^2 + 3x + 2 | 
|  | Vector true_polynomial(4); | 
|  | true_polynomial << 0.0, 2.0, 3.0, 2.0; | 
|  |  | 
|  | vector<FunctionSample> samples; | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = 1.0; | 
|  | sample.value = 7.0; | 
|  | sample.value_is_valid = true; | 
|  | sample.gradient = 7.0; | 
|  | sample.gradient_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = -3.0; | 
|  | sample.value = 11.0; | 
|  | sample.value_is_valid = true; | 
|  | sample.gradient = -9; | 
|  | sample.gradient_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | const Vector polynomial = FindInterpolatingPolynomial(samples); | 
|  | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, CubicInterpolatingPolynomialFromValues) { | 
|  | // p(x) = x^3 + 2x^2 + 3x + 2 | 
|  | Vector true_polynomial(4); | 
|  | true_polynomial << 1.0, 2.0, 3.0, 2.0; | 
|  |  | 
|  | vector<FunctionSample> samples; | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = 1.0; | 
|  | sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
|  | sample.value_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = -3.0; | 
|  | sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
|  | sample.value_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = 2.0; | 
|  | sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
|  | sample.value_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = 0.0; | 
|  | sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
|  | sample.value_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | const Vector polynomial = FindInterpolatingPolynomial(samples); | 
|  | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndOneGradient) { | 
|  | // p(x) = x^3 + 2x^2 + 3x + 2 | 
|  | Vector true_polynomial(4); | 
|  | true_polynomial << 1.0, 2.0, 3.0, 2.0; | 
|  | Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial); | 
|  |  | 
|  | vector<FunctionSample> samples; | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = 1.0; | 
|  | sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
|  | sample.value_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = -3.0; | 
|  | sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
|  | sample.value_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = 2.0; | 
|  | sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
|  | sample.value_is_valid = true; | 
|  | sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x); | 
|  | sample.gradient_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | const Vector polynomial = FindInterpolatingPolynomial(samples); | 
|  | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); | 
|  | } | 
|  |  | 
|  | TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndGradients) { | 
|  | // p(x) = x^3 + 2x^2 + 3x + 2 | 
|  | Vector true_polynomial(4); | 
|  | true_polynomial << 1.0, 2.0, 3.0, 2.0; | 
|  | Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial); | 
|  |  | 
|  | vector<FunctionSample> samples; | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = -3.0; | 
|  | sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
|  | sample.value_is_valid = true; | 
|  | sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x); | 
|  | sample.gradient_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | { | 
|  | FunctionSample sample; | 
|  | sample.x = 2.0; | 
|  | sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
|  | sample.value_is_valid = true; | 
|  | sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x); | 
|  | sample.gradient_is_valid = true; | 
|  | samples.push_back(sample); | 
|  | } | 
|  |  | 
|  | const Vector polynomial = FindInterpolatingPolynomial(samples); | 
|  | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |