|  |  | 
|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2017 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: mierle@gmail.com (Keir Mierle) | 
|  |  | 
|  | #include "ceres/tiny_solver_autodiff_function.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <limits> | 
|  |  | 
|  | #include "ceres/tiny_solver.h" | 
|  | #include "ceres/tiny_solver_test_util.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | struct AutoDiffTestFunctor { | 
|  | template <typename T> | 
|  | bool operator()(const T* const parameters, T* residuals) const { | 
|  | // Shift the parameters so the solution is not at the origin, to prevent | 
|  | // accidentally showing "PASS". | 
|  | const T& a = parameters[0] - T(1.0); | 
|  | const T& b = parameters[1] - T(2.0); | 
|  | const T& c = parameters[2] - T(3.0); | 
|  | residuals[0] = 2. * a + 0. * b + 1. * c; | 
|  | residuals[1] = 0. * a + 4. * b + 6. * c; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Leave a factor of 10 slop since these tests tend to mysteriously break on | 
|  | // other compilers or architectures if the tolerance is too tight. | 
|  | static double const kTolerance = std::numeric_limits<double>::epsilon() * 10; | 
|  |  | 
|  | TEST(TinySolverAutoDiffFunction, SimpleFunction) { | 
|  | using AutoDiffTestFunction = | 
|  | TinySolverAutoDiffFunction<AutoDiffTestFunctor, 2, 3>; | 
|  | AutoDiffTestFunctor autodiff_test_functor; | 
|  | AutoDiffTestFunction f(autodiff_test_functor); | 
|  |  | 
|  | Eigen::Vector3d x(2.0, 1.0, 4.0); | 
|  | Eigen::Vector2d residuals; | 
|  |  | 
|  | // Check the case with cost-only evaluation. | 
|  | residuals.setConstant(555);  // Arbitrary. | 
|  | EXPECT_TRUE(f(&x(0), &residuals(0), nullptr)); | 
|  | EXPECT_NEAR(3.0, residuals(0), kTolerance); | 
|  | EXPECT_NEAR(2.0, residuals(1), kTolerance); | 
|  |  | 
|  | // Check the case with cost and Jacobian evaluation. | 
|  | Eigen::Matrix<double, 2, 3> jacobian; | 
|  | residuals.setConstant(555);  // Arbitrary. | 
|  | jacobian.setConstant(555); | 
|  | EXPECT_TRUE(f(&x(0), &residuals(0), &jacobian(0, 0))); | 
|  |  | 
|  | // Verify cost. | 
|  | EXPECT_NEAR(3.0, residuals(0), kTolerance); | 
|  | EXPECT_NEAR(2.0, residuals(1), kTolerance); | 
|  |  | 
|  | // Verify Jacobian Row 1. | 
|  | EXPECT_NEAR(2.0, jacobian(0, 0), kTolerance); | 
|  | EXPECT_NEAR(0.0, jacobian(0, 1), kTolerance); | 
|  | EXPECT_NEAR(1.0, jacobian(0, 2), kTolerance); | 
|  |  | 
|  | // Verify Jacobian row 2. | 
|  | EXPECT_NEAR(0.0, jacobian(1, 0), kTolerance); | 
|  | EXPECT_NEAR(4.0, jacobian(1, 1), kTolerance); | 
|  | EXPECT_NEAR(6.0, jacobian(1, 2), kTolerance); | 
|  | } | 
|  |  | 
|  | class DynamicResidualsFunctor { | 
|  | public: | 
|  | using Scalar = double; | 
|  | enum { | 
|  | NUM_RESIDUALS = Eigen::Dynamic, | 
|  | NUM_PARAMETERS = 3, | 
|  | }; | 
|  |  | 
|  | int NumResiduals() const { return 2; } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* parameters, T* residuals) const { | 
|  | // Jacobian is not evaluated by cost function, but by autodiff. | 
|  | T* jacobian = nullptr; | 
|  | return EvaluateResidualsAndJacobians(parameters, residuals, jacobian); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Function, typename Vector> | 
|  | void TestHelper(const Function& f, const Vector& x0) { | 
|  | Vector x = x0; | 
|  | Eigen::Vector2d residuals; | 
|  | f(x.data(), residuals.data(), nullptr); | 
|  | EXPECT_GT(residuals.squaredNorm() / 2.0, 1e-10); | 
|  |  | 
|  | TinySolver<Function> solver; | 
|  | solver.Solve(f, &x); | 
|  | EXPECT_NEAR(0.0, solver.summary.final_cost, 1e-10); | 
|  | } | 
|  |  | 
|  | // A test case for when the number of residuals is | 
|  | // dynamically sized and we use autodiff | 
|  | TEST(TinySolverAutoDiffFunction, ResidualsDynamicAutoDiff) { | 
|  | Eigen::Vector3d x0(0.76026643, -30.01799744, 0.55192142); | 
|  |  | 
|  | DynamicResidualsFunctor f; | 
|  | using AutoDiffCostFunctor = ceres:: | 
|  | TinySolverAutoDiffFunction<DynamicResidualsFunctor, Eigen::Dynamic, 3>; | 
|  | AutoDiffCostFunctor f_autodiff(f); | 
|  |  | 
|  | Eigen::Vector2d residuals; | 
|  | f_autodiff(x0.data(), residuals.data(), nullptr); | 
|  | EXPECT_GT(residuals.squaredNorm() / 2.0, 1e-10); | 
|  |  | 
|  | TinySolver<AutoDiffCostFunctor> solver; | 
|  | solver.Solve(f_autodiff, &x0); | 
|  | EXPECT_NEAR(0.0, solver.summary.final_cost, 1e-10); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres |