|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <vector> | 
|  | #include "ceres/matrix_proto.h" | 
|  | #include "ceres/internal/port.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  | namespace { | 
|  |  | 
|  | // Helper functor used by the constructor for reordering the contents | 
|  | // of a TripletSparseMatrix. This comparator assumes thay there are no | 
|  | // duplicates in the pair of arrays rows and cols, i.e., there is no | 
|  | // indices i and j (not equal to each other) s.t. | 
|  | // | 
|  | //  rows[i] == rows[j] && cols[i] == cols[j] | 
|  | // | 
|  | // If this is the case, this functor will not be a StrictWeakOrdering. | 
|  | struct RowColLessThan { | 
|  | RowColLessThan(const int* rows, const int* cols) | 
|  | : rows(rows), cols(cols) { | 
|  | } | 
|  |  | 
|  | bool operator()(const int x, const int y) const { | 
|  | if (rows[x] == rows[y]) { | 
|  | return (cols[x] < cols[y]); | 
|  | } | 
|  | return (rows[x] < rows[y]); | 
|  | } | 
|  |  | 
|  | const int* rows; | 
|  | const int* cols; | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // This constructor gives you a semi-initialized CompressedRowSparseMatrix. | 
|  | CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows, | 
|  | int num_cols, | 
|  | int max_num_nonzeros) { | 
|  | num_rows_ = num_rows; | 
|  | num_cols_ = num_cols; | 
|  | max_num_nonzeros_ = max_num_nonzeros; | 
|  |  | 
|  | VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ | 
|  | << " max_num_nonzeros: " << max_num_nonzeros_ | 
|  | << ". Allocating " << (num_rows_ + 1) * sizeof(int) +  // NOLINT | 
|  | max_num_nonzeros_ * sizeof(int) +  // NOLINT | 
|  | max_num_nonzeros_ * sizeof(double);  // NOLINT | 
|  |  | 
|  | rows_.reset(new int[num_rows_ + 1]); | 
|  | cols_.reset(new int[max_num_nonzeros_]); | 
|  | values_.reset(new double[max_num_nonzeros_]); | 
|  |  | 
|  | fill(rows_.get(), rows_.get() + num_rows_ + 1, 0); | 
|  | fill(cols_.get(), cols_.get() + max_num_nonzeros_, 0); | 
|  | fill(values_.get(), values_.get() + max_num_nonzeros_, 0); | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix::CompressedRowSparseMatrix( | 
|  | const TripletSparseMatrix& m) { | 
|  | num_rows_ = m.num_rows(); | 
|  | num_cols_ = m.num_cols(); | 
|  | max_num_nonzeros_ = m.max_num_nonzeros(); | 
|  |  | 
|  | // index is the list of indices into the TripletSparseMatrix m. | 
|  | vector<int> index(m.num_nonzeros(), 0); | 
|  | for (int i = 0; i < m.num_nonzeros(); ++i) { | 
|  | index[i] = i; | 
|  | } | 
|  |  | 
|  | // Sort index such that the entries of m are ordered by row and ties | 
|  | // are broken by column. | 
|  | sort(index.begin(), index.end(), RowColLessThan(m.rows(), m.cols())); | 
|  |  | 
|  | VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ | 
|  | << " max_num_nonzeros: " << max_num_nonzeros_ | 
|  | << ". Allocating " << (num_rows_ + 1) * sizeof(int) +  // NOLINT | 
|  | max_num_nonzeros_ * sizeof(int) +  // NOLINT | 
|  | max_num_nonzeros_ * sizeof(double);  // NOLINT | 
|  |  | 
|  | rows_.reset(new int[num_rows_ + 1]); | 
|  | cols_.reset(new int[max_num_nonzeros_]); | 
|  | values_.reset(new double[max_num_nonzeros_]); | 
|  |  | 
|  | // rows_ = 0 | 
|  | fill(rows_.get(), rows_.get() + num_rows_ + 1, 0); | 
|  |  | 
|  | // Copy the contents of the cols and values array in the order given | 
|  | // by index and count the number of entries in each row. | 
|  | for (int i = 0; i < m.num_nonzeros(); ++i) { | 
|  | const int idx = index[i]; | 
|  | ++rows_[m.rows()[idx] + 1]; | 
|  | cols_[i] = m.cols()[idx]; | 
|  | values_[i] = m.values()[idx]; | 
|  | } | 
|  |  | 
|  | // Find the cumulative sum of the row counts. | 
|  | for (int i = 1; i < num_rows_ + 1; ++i) { | 
|  | rows_[i] += rows_[i-1]; | 
|  | } | 
|  |  | 
|  | CHECK_EQ(num_nonzeros(), m.num_nonzeros()); | 
|  | } | 
|  |  | 
|  | #ifndef CERES_DONT_HAVE_PROTOCOL_BUFFERS | 
|  | CompressedRowSparseMatrix::CompressedRowSparseMatrix( | 
|  | const SparseMatrixProto& outer_proto) { | 
|  | CHECK(outer_proto.has_compressed_row_matrix()); | 
|  |  | 
|  | const CompressedRowSparseMatrixProto& proto = | 
|  | outer_proto.compressed_row_matrix(); | 
|  |  | 
|  | num_rows_ = proto.num_rows(); | 
|  | num_cols_ = proto.num_cols(); | 
|  |  | 
|  | rows_.reset(new int[proto.rows_size()]); | 
|  | cols_.reset(new int[proto.cols_size()]); | 
|  | values_.reset(new double[proto.values_size()]); | 
|  |  | 
|  | for (int i = 0; i < proto.rows_size(); ++i) { | 
|  | rows_[i] = proto.rows(i); | 
|  | } | 
|  |  | 
|  | CHECK_EQ(proto.rows_size(), num_rows_ + 1); | 
|  | CHECK_EQ(proto.cols_size(), proto.values_size()); | 
|  | CHECK_EQ(proto.cols_size(), rows_[num_rows_]); | 
|  |  | 
|  | for (int i = 0; i < proto.cols_size(); ++i) { | 
|  | cols_[i] = proto.cols(i); | 
|  | values_[i] = proto.values(i); | 
|  | } | 
|  |  | 
|  | max_num_nonzeros_ = proto.cols_size(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal, | 
|  | int num_rows) { | 
|  | CHECK_NOTNULL(diagonal); | 
|  |  | 
|  | num_rows_ = num_rows; | 
|  | num_cols_ = num_rows; | 
|  | max_num_nonzeros_ = num_rows; | 
|  |  | 
|  | rows_.reset(new int[num_rows_ + 1]); | 
|  | cols_.reset(new int[num_rows_]); | 
|  | values_.reset(new double[num_rows_]); | 
|  |  | 
|  | rows_[0] = 0; | 
|  | for (int i = 0; i < num_rows_; ++i) { | 
|  | cols_[i] = i; | 
|  | values_[i] = diagonal[i]; | 
|  | rows_[i + 1] = i + 1; | 
|  | } | 
|  |  | 
|  | CHECK_EQ(num_nonzeros(), num_rows); | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix::~CompressedRowSparseMatrix() { | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::SetZero() { | 
|  | fill(values_.get(), values_.get() + num_nonzeros(), 0.0); | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::RightMultiply(const double* x, | 
|  | double* y) const { | 
|  | CHECK_NOTNULL(x); | 
|  | CHECK_NOTNULL(y); | 
|  |  | 
|  | for (int r = 0; r < num_rows_; ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
|  | y[r] += values_[idx] * x[cols_[idx]]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const { | 
|  | CHECK_NOTNULL(x); | 
|  | CHECK_NOTNULL(y); | 
|  |  | 
|  | for (int r = 0; r < num_rows_; ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
|  | y[cols_[idx]] += values_[idx] * x[r]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const { | 
|  | CHECK_NOTNULL(x); | 
|  |  | 
|  | fill(x, x + num_cols_, 0.0); | 
|  | for (int idx = 0; idx < rows_[num_rows_]; ++idx) { | 
|  | x[cols_[idx]] += values_[idx] * values_[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::ScaleColumns(const double* scale) { | 
|  | CHECK_NOTNULL(scale); | 
|  |  | 
|  | for (int idx = 0; idx < rows_[num_rows_]; ++idx) { | 
|  | values_[idx] *= scale[cols_[idx]]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { | 
|  | CHECK_NOTNULL(dense_matrix); | 
|  | dense_matrix->resize(num_rows_, num_cols_); | 
|  | dense_matrix->setZero(); | 
|  |  | 
|  | for (int r = 0; r < num_rows_; ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
|  | (*dense_matrix)(r, cols_[idx]) = values_[idx]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CERES_DONT_HAVE_PROTOCOL_BUFFERS | 
|  | void CompressedRowSparseMatrix::ToProto(SparseMatrixProto* outer_proto) const { | 
|  | CHECK_NOTNULL(outer_proto); | 
|  |  | 
|  | outer_proto->Clear(); | 
|  | CompressedRowSparseMatrixProto* proto | 
|  | = outer_proto->mutable_compressed_row_matrix(); | 
|  |  | 
|  | proto->set_num_rows(num_rows_); | 
|  | proto->set_num_cols(num_cols_); | 
|  |  | 
|  | for (int r = 0; r < num_rows_ + 1; ++r) { | 
|  | proto->add_rows(rows_[r]); | 
|  | } | 
|  |  | 
|  | for (int idx = 0; idx < rows_[num_rows_]; ++idx) { | 
|  | proto->add_cols(cols_[idx]); | 
|  | proto->add_values(values_[idx]); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void CompressedRowSparseMatrix::DeleteRows(int delta_rows) { | 
|  | CHECK_GE(delta_rows, 0); | 
|  | CHECK_LE(delta_rows, num_rows_); | 
|  |  | 
|  | int new_num_rows = num_rows_ - delta_rows; | 
|  |  | 
|  | num_rows_ = new_num_rows; | 
|  | int* new_rows = new int[num_rows_ + 1]; | 
|  | copy(rows_.get(), rows_.get() + num_rows_ + 1, new_rows); | 
|  | rows_.reset(new_rows); | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) { | 
|  | CHECK_EQ(m.num_cols(), num_cols_); | 
|  |  | 
|  | // Check if there is enough space. If not, then allocate new arrays | 
|  | // to hold the combined matrix and copy the contents of this matrix | 
|  | // into it. | 
|  | if (max_num_nonzeros_ < num_nonzeros() + m.num_nonzeros()) { | 
|  | int new_max_num_nonzeros =  num_nonzeros() + m.num_nonzeros(); | 
|  |  | 
|  | VLOG(1) << "Reallocating " << sizeof(int) * new_max_num_nonzeros;  // NOLINT | 
|  |  | 
|  | int* new_cols = new int[new_max_num_nonzeros]; | 
|  | copy(cols_.get(), cols_.get() + max_num_nonzeros_, new_cols); | 
|  | cols_.reset(new_cols); | 
|  |  | 
|  | double* new_values = new double[new_max_num_nonzeros]; | 
|  | copy(values_.get(), values_.get() + max_num_nonzeros_, new_values); | 
|  | values_.reset(new_values); | 
|  |  | 
|  | max_num_nonzeros_ = new_max_num_nonzeros; | 
|  | } | 
|  |  | 
|  | // Copy the contents of m into this matrix. | 
|  | copy(m.cols(), m.cols() + m.num_nonzeros(), cols_.get() + num_nonzeros()); | 
|  | copy(m.values(), | 
|  | m.values() + m.num_nonzeros(), | 
|  | values_.get() + num_nonzeros()); | 
|  |  | 
|  | // Create the new rows array to hold the enlarged matrix. | 
|  | int* new_rows = new int[num_rows_ + m.num_rows() + 1]; | 
|  | // The first num_rows_ entries are the same | 
|  | copy(rows_.get(), rows_.get() + num_rows_, new_rows); | 
|  |  | 
|  | // new_rows = [rows_, m.row() + rows_[num_rows_]] | 
|  | fill(new_rows + num_rows_, | 
|  | new_rows + num_rows_ + m.num_rows() + 1, | 
|  | rows_[num_rows_]); | 
|  |  | 
|  | for (int r = 0; r < m.num_rows() + 1; ++r) { | 
|  | new_rows[num_rows_ + r] += m.rows()[r]; | 
|  | } | 
|  |  | 
|  | rows_.reset(new_rows); | 
|  | num_rows_ += m.num_rows(); | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::ToTextFile(FILE* file) const { | 
|  | CHECK_NOTNULL(file); | 
|  | for (int r = 0; r < num_rows_; ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
|  | fprintf(file, "% 10d % 10d %17f\n", r, cols_[idx], values_[idx]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |