|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "gtest/gtest.h" | 
|  | #include "ceres/autodiff_cost_function.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/parameter_block.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/residual_block.h" | 
|  | #include "ceres/solver_impl.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // Templated base class for the CostFunction signatures. | 
|  | template <int kNumResiduals, int N0, int N1, int N2> | 
|  | class MockCostFunctionBase : public | 
|  | SizedCostFunction<kNumResiduals, N0, N1, N2> { | 
|  | public: | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | // Do nothing. This is never called. | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class UnaryCostFunction : public MockCostFunctionBase<2, 1, 0, 0> {}; | 
|  | class BinaryCostFunction : public MockCostFunctionBase<2, 1, 1, 0> {}; | 
|  | class TernaryCostFunction : public MockCostFunctionBase<2, 1, 1, 1> {}; | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksNothingConstant) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  | problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
|  |  | 
|  | string error; | 
|  | { | 
|  | int num_eliminate_blocks = 0; | 
|  | Program program(*problem.mutable_program()); | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
|  | &num_eliminate_blocks, | 
|  | &error)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 3); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 3); | 
|  | EXPECT_EQ(num_eliminate_blocks, 0); | 
|  | } | 
|  |  | 
|  | // Check that num_eliminate_blocks is preserved, when it contains | 
|  | // all blocks. | 
|  | { | 
|  | int num_eliminate_blocks = 3; | 
|  | Program program(problem.program()); | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
|  | &num_eliminate_blocks, | 
|  | &error)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 3); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 3); | 
|  | EXPECT_EQ(num_eliminate_blocks, 3); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksAllParameterBlocksConstant) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  |  | 
|  | int num_eliminate_blocks = 0; | 
|  | Program program(problem.program()); | 
|  | string error; | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
|  | &num_eliminate_blocks, | 
|  | &error)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 0); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 0); | 
|  | EXPECT_EQ(num_eliminate_blocks, 0); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksNoResidualBlocks) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | int num_eliminate_blocks = 0; | 
|  | Program program(problem.program()); | 
|  | string error; | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
|  | &num_eliminate_blocks, | 
|  | &error)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 0); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 0); | 
|  | EXPECT_EQ(num_eliminate_blocks, 0); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksOneParameterBlockConstant) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  |  | 
|  | int num_eliminate_blocks = 0; | 
|  | Program program(problem.program()); | 
|  | string error; | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
|  | &num_eliminate_blocks, | 
|  | &error)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 1); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 1); | 
|  | EXPECT_EQ(num_eliminate_blocks, 0); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksNumEliminateBlocks) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  |  | 
|  | int num_eliminate_blocks = 2; | 
|  | Program program(problem.program()); | 
|  | string error; | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
|  | &num_eliminate_blocks, | 
|  | &error)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 2); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 2); | 
|  | EXPECT_EQ(num_eliminate_blocks, 1); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ReorderResidualBlockNonSchurSolver) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  |  | 
|  | const vector<ResidualBlock*>& residual_blocks = | 
|  | problem.program().residual_blocks(); | 
|  | vector<ResidualBlock*> current_residual_blocks(residual_blocks); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | string error; | 
|  |  | 
|  | EXPECT_TRUE(SolverImpl::MaybeReorderResidualBlocks(options, | 
|  | problem.mutable_program(), | 
|  | &error)); | 
|  | EXPECT_EQ(current_residual_blocks.size(), residual_blocks.size()); | 
|  | for (int i = 0; i < current_residual_blocks.size(); ++i) { | 
|  | EXPECT_EQ(current_residual_blocks[i], residual_blocks[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ReorderResidualBlockNumEliminateBlockDeathTest) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.num_eliminate_blocks = 0; | 
|  | string error; | 
|  | #ifndef _WIN32 | 
|  | EXPECT_DEATH( | 
|  | SolverImpl::MaybeReorderResidualBlocks( | 
|  | options, problem.mutable_program(), &error), | 
|  | "Congratulations"); | 
|  | #endif  // _WIN32 | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ReorderResidualBlockNormalFunction) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.num_eliminate_blocks = 2; | 
|  |  | 
|  | const vector<ResidualBlock*>& residual_blocks = | 
|  | problem.program().residual_blocks(); | 
|  |  | 
|  | vector<ResidualBlock*> expected_residual_blocks; | 
|  |  | 
|  | // This is a bit fragile, but it serves the purpose. We know the | 
|  | // bucketing algorithm that the reordering function uses, so we | 
|  | // expect the order for residual blocks for each e_block to be | 
|  | // filled in reverse. | 
|  | expected_residual_blocks.push_back(residual_blocks[4]); | 
|  | expected_residual_blocks.push_back(residual_blocks[1]); | 
|  | expected_residual_blocks.push_back(residual_blocks[0]); | 
|  | expected_residual_blocks.push_back(residual_blocks[5]); | 
|  | expected_residual_blocks.push_back(residual_blocks[2]); | 
|  | expected_residual_blocks.push_back(residual_blocks[3]); | 
|  |  | 
|  | Program* program = problem.mutable_program(); | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  |  | 
|  | string error; | 
|  | EXPECT_TRUE(SolverImpl::MaybeReorderResidualBlocks(options, | 
|  | problem.mutable_program(), | 
|  | &error)); | 
|  | EXPECT_EQ(residual_blocks.size(), expected_residual_blocks.size()); | 
|  | for (int i = 0; i < expected_residual_blocks.size(); ++i) { | 
|  | EXPECT_EQ(residual_blocks[i], expected_residual_blocks[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ReorderResidualBlockNormalFunctionWithFixedBlocks) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | // Set one parameter block constant. | 
|  | problem.SetParameterBlockConstant(&z); | 
|  |  | 
|  | // Mark residuals for x's row block with "x" for readability. | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);       // 0 x | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x);  // 1 x | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);  // 2 | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);  // 3 | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);  // 4 x | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);  // 5 | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);  // 6 x | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y);       // 7 | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.num_eliminate_blocks = 2; | 
|  |  | 
|  | // Create the reduced program. This should remove the fixed block "z", | 
|  | // marking the index to -1 at the same time. x and y also get indices. | 
|  | string error; | 
|  | scoped_ptr<Program> reduced_program( | 
|  | SolverImpl::CreateReducedProgram(&options, &problem, &error)); | 
|  |  | 
|  | const vector<ResidualBlock*>& residual_blocks = | 
|  | problem.program().residual_blocks(); | 
|  |  | 
|  | // This is a bit fragile, but it serves the purpose. We know the | 
|  | // bucketing algorithm that the reordering function uses, so we | 
|  | // expect the order for residual blocks for each e_block to be | 
|  | // filled in reverse. | 
|  |  | 
|  | vector<ResidualBlock*> expected_residual_blocks; | 
|  |  | 
|  | // Row block for residuals involving "x". These are marked "x" in the block | 
|  | // of code calling AddResidual() above. | 
|  | expected_residual_blocks.push_back(residual_blocks[6]); | 
|  | expected_residual_blocks.push_back(residual_blocks[4]); | 
|  | expected_residual_blocks.push_back(residual_blocks[1]); | 
|  | expected_residual_blocks.push_back(residual_blocks[0]); | 
|  |  | 
|  | // Row block for residuals involving "y". | 
|  | expected_residual_blocks.push_back(residual_blocks[7]); | 
|  | expected_residual_blocks.push_back(residual_blocks[5]); | 
|  | expected_residual_blocks.push_back(residual_blocks[3]); | 
|  | expected_residual_blocks.push_back(residual_blocks[2]); | 
|  |  | 
|  | EXPECT_TRUE(SolverImpl::MaybeReorderResidualBlocks(options, | 
|  | reduced_program.get(), | 
|  | &error)); | 
|  |  | 
|  | EXPECT_EQ(reduced_program->residual_blocks().size(), | 
|  | expected_residual_blocks.size()); | 
|  | for (int i = 0; i < expected_residual_blocks.size(); ++i) { | 
|  | EXPECT_EQ(reduced_program->residual_blocks()[i], | 
|  | expected_residual_blocks[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ApplyUserOrderingOrderingTooSmall) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | vector<double*> ordering; | 
|  | ordering.push_back(&x); | 
|  | ordering.push_back(&z); | 
|  |  | 
|  | Program program(problem.program()); | 
|  | string error; | 
|  | EXPECT_FALSE(SolverImpl::ApplyUserOrdering(problem, | 
|  | ordering, | 
|  | &program, | 
|  | &error)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ApplyUserOrderingHasDuplicates) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | vector<double*> ordering; | 
|  | ordering.push_back(&x); | 
|  | ordering.push_back(&z); | 
|  | ordering.push_back(&z); | 
|  |  | 
|  | Program program(problem.program()); | 
|  | string error; | 
|  | EXPECT_FALSE(SolverImpl::ApplyUserOrdering(problem, | 
|  | ordering, | 
|  | &program, | 
|  | &error)); | 
|  | } | 
|  |  | 
|  |  | 
|  | TEST(SolverImpl, ApplyUserOrderingNormal) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | vector<double*> ordering; | 
|  | ordering.push_back(&x); | 
|  | ordering.push_back(&z); | 
|  | ordering.push_back(&y); | 
|  |  | 
|  | Program* program = problem.mutable_program(); | 
|  | string error; | 
|  |  | 
|  | EXPECT_TRUE(SolverImpl::ApplyUserOrdering(problem, | 
|  | ordering, | 
|  | program, | 
|  | &error)); | 
|  | const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); | 
|  |  | 
|  | EXPECT_EQ(parameter_blocks.size(), 3); | 
|  | EXPECT_EQ(parameter_blocks[0]->user_state(), &x); | 
|  | EXPECT_EQ(parameter_blocks[1]->user_state(), &z); | 
|  | EXPECT_EQ(parameter_blocks[2]->user_state(), &y); | 
|  | } | 
|  |  | 
|  | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
|  | TEST(SolverImpl, CreateLinearSolverNoSuiteSparse) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | string error; | 
|  | EXPECT_FALSE(SolverImpl::CreateLinearSolver(&options, &error)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverNegativeMaxNumIterations) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | options.linear_solver_max_num_iterations = -1; | 
|  | string error; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverNegativeMinNumIterations) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | options.linear_solver_min_num_iterations = -1; | 
|  | string error; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverMaxLessThanMinIterations) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | options.linear_solver_min_num_iterations = 10; | 
|  | options.linear_solver_max_num_iterations = 5; | 
|  | string error; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverZeroNumEliminateBlocks) { | 
|  | Solver::Options options; | 
|  | options.num_eliminate_blocks = 0; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | string error; | 
|  | scoped_ptr<LinearSolver> solver( | 
|  | SolverImpl::CreateLinearSolver(&options, &error)); | 
|  | EXPECT_TRUE(solver != NULL); | 
|  |  | 
|  | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_QR); | 
|  | #else | 
|  | EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverDenseSchurMultipleThreads) { | 
|  | Solver::Options options; | 
|  | options.num_eliminate_blocks = 1; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.num_linear_solver_threads = 2; | 
|  | string error; | 
|  | scoped_ptr<LinearSolver> solver( | 
|  | SolverImpl::CreateLinearSolver(&options, &error)); | 
|  | EXPECT_TRUE(solver != NULL); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR); | 
|  | EXPECT_EQ(options.num_linear_solver_threads, 1); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateIterativeLinearSolverForDogleg) { | 
|  | Solver::Options options; | 
|  | options.trust_region_strategy_type = DOGLEG; | 
|  | string error; | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  |  | 
|  | options.linear_solver_type = CGNR; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverNormalOperation) { | 
|  | Solver::Options options; | 
|  | scoped_ptr<LinearSolver> solver; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | string error; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_QR); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.sparse_linear_algebra_library = SUITE_SPARSE; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
|  | EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.sparse_linear_algebra_library = CX_SPARSE; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
|  | EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  | #endif | 
|  |  | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.num_eliminate_blocks = 2; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  |  | 
|  | options.linear_solver_type = SPARSE_SCHUR; | 
|  | options.num_eliminate_blocks = 2; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
|  |  | 
|  | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
|  | EXPECT_TRUE(SolverImpl::CreateLinearSolver(&options, &error) == NULL); | 
|  | #else | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  | EXPECT_EQ(options.linear_solver_type, SPARSE_SCHUR); | 
|  | #endif | 
|  |  | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | options.num_eliminate_blocks = 2; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
|  | EXPECT_EQ(options.linear_solver_type, ITERATIVE_SCHUR); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  | } | 
|  |  | 
|  | struct QuadraticCostFunction { | 
|  | template <typename T> bool operator()(const T* const x, | 
|  | T* residual) const { | 
|  | residual[0] = T(5.0) - *x; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct RememberingCallback : public IterationCallback { | 
|  | RememberingCallback(double *x) : calls(0), x(x) {} | 
|  | virtual ~RememberingCallback() {} | 
|  | virtual CallbackReturnType operator()(const IterationSummary& summary) { | 
|  | x_values.push_back(*x); | 
|  | return SOLVER_CONTINUE; | 
|  | } | 
|  | int calls; | 
|  | double *x; | 
|  | vector<double> x_values; | 
|  | }; | 
|  |  | 
|  | TEST(SolverImpl, UpdateStateEveryIterationOption) { | 
|  | double x = 50.0; | 
|  | const double original_x = x; | 
|  |  | 
|  | scoped_ptr<CostFunction> cost_function( | 
|  | new AutoDiffCostFunction<QuadraticCostFunction, 1, 1>( | 
|  | new QuadraticCostFunction)); | 
|  |  | 
|  | Problem::Options problem_options; | 
|  | problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; | 
|  | ProblemImpl problem(problem_options); | 
|  | problem.AddResidualBlock(cost_function.get(), NULL, &x); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  |  | 
|  | RememberingCallback callback(&x); | 
|  | options.callbacks.push_back(&callback); | 
|  |  | 
|  | Solver::Summary summary; | 
|  |  | 
|  | int num_iterations; | 
|  |  | 
|  | // First try: no updating. | 
|  | SolverImpl::Solve(options, &problem, &summary); | 
|  | num_iterations = summary.num_successful_steps + | 
|  | summary.num_unsuccessful_steps; | 
|  | EXPECT_GT(num_iterations, 1); | 
|  | for (int i = 0; i < callback.x_values.size(); ++i) { | 
|  | EXPECT_EQ(50.0, callback.x_values[i]); | 
|  | } | 
|  |  | 
|  | // Second try: with updating | 
|  | x = 50.0; | 
|  | options.update_state_every_iteration = true; | 
|  | callback.x_values.clear(); | 
|  | SolverImpl::Solve(options, &problem, &summary); | 
|  | num_iterations = summary.num_successful_steps + | 
|  | summary.num_unsuccessful_steps; | 
|  | EXPECT_GT(num_iterations, 1); | 
|  | EXPECT_EQ(original_x, callback.x_values[0]); | 
|  | EXPECT_NE(original_x, callback.x_values[1]); | 
|  | } | 
|  |  | 
|  | // The parameters must be in separate blocks so that they can be individually | 
|  | // set constant or not. | 
|  | struct Quadratic4DCostFunction { | 
|  | template <typename T> bool operator()(const T* const x, | 
|  | const T* const y, | 
|  | const T* const z, | 
|  | const T* const w, | 
|  | T* residual) const { | 
|  | // A 4-dimension axis-aligned quadratic. | 
|  | residual[0] = T(10.0) - *x + | 
|  | T(20.0) - *y + | 
|  | T(30.0) - *z + | 
|  | T(40.0) - *w; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(SolverImpl, ConstantParameterBlocksDoNotChangeAndStateInvariantKept) { | 
|  | double x = 50.0; | 
|  | double y = 50.0; | 
|  | double z = 50.0; | 
|  | double w = 50.0; | 
|  | const double original_x = 50.0; | 
|  | const double original_y = 50.0; | 
|  | const double original_z = 50.0; | 
|  | const double original_w = 50.0; | 
|  |  | 
|  | scoped_ptr<CostFunction> cost_function( | 
|  | new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>( | 
|  | new Quadratic4DCostFunction)); | 
|  |  | 
|  | Problem::Options problem_options; | 
|  | problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; | 
|  |  | 
|  | ProblemImpl problem(problem_options); | 
|  | problem.AddResidualBlock(cost_function.get(), NULL, &x, &y, &z, &w); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  | problem.SetParameterBlockConstant(&w); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  |  | 
|  | Solver::Summary summary; | 
|  | SolverImpl::Solve(options, &problem, &summary); | 
|  |  | 
|  | // Verify only the non-constant parameters were mutated. | 
|  | EXPECT_EQ(original_x, x); | 
|  | EXPECT_NE(original_y, y); | 
|  | EXPECT_NE(original_z, z); | 
|  | EXPECT_EQ(original_w, w); | 
|  |  | 
|  | // Check that the parameter block state pointers are pointing back at the | 
|  | // user state, instead of inside a random temporary vector made by Solve(). | 
|  | EXPECT_EQ(&x, problem.program().parameter_blocks()[0]->state()); | 
|  | EXPECT_EQ(&y, problem.program().parameter_blocks()[1]->state()); | 
|  | EXPECT_EQ(&z, problem.program().parameter_blocks()[2]->state()); | 
|  | EXPECT_EQ(&w, problem.program().parameter_blocks()[3]->state()); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |