|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include <glog/logging.h> | 
|  | #include "gtest/gtest.h" | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | class UnsymmetricLinearSolverTest : public ::testing::Test { | 
|  | protected : | 
|  | virtual void SetUp() { | 
|  | scoped_ptr<LinearLeastSquaresProblem> problem( | 
|  | CreateLinearLeastSquaresProblemFromId(0)); | 
|  |  | 
|  | CHECK_NOTNULL(problem.get()); | 
|  | A_.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); | 
|  | b_.reset(problem->b.release()); | 
|  | D_.reset(problem->D.release()); | 
|  | sol_unregularized_.reset(problem->x.release()); | 
|  | sol_regularized_.reset(problem->x_D.release()); | 
|  | } | 
|  |  | 
|  | void TestSolver( | 
|  | LinearSolverType linear_solver_type, | 
|  | SparseLinearAlgebraLibraryType sparse_linear_algebra_library) { | 
|  | LinearSolver::Options options; | 
|  | options.type = linear_solver_type; | 
|  | options.sparse_linear_algebra_library = sparse_linear_algebra_library; | 
|  | options.use_block_amd = false; | 
|  | scoped_ptr<LinearSolver> solver(LinearSolver::Create(options)); | 
|  |  | 
|  | LinearSolver::PerSolveOptions per_solve_options; | 
|  | LinearSolver::Summary unregularized_solve_summary; | 
|  | LinearSolver::Summary regularized_solve_summary; | 
|  | Vector x_unregularized(A_->num_cols()); | 
|  | Vector x_regularized(A_->num_cols()); | 
|  |  | 
|  | scoped_ptr<SparseMatrix> transformed_A; | 
|  |  | 
|  | if (linear_solver_type == DENSE_QR) { | 
|  | transformed_A.reset(new DenseSparseMatrix(*A_)); | 
|  | } else if (linear_solver_type == SPARSE_NORMAL_CHOLESKY) { | 
|  | transformed_A.reset(new   CompressedRowSparseMatrix(*A_)); | 
|  | } else { | 
|  | LOG(FATAL) << "Unknown linear solver : " << linear_solver_type; | 
|  | } | 
|  | // Unregularized | 
|  | unregularized_solve_summary = | 
|  | solver->Solve(transformed_A.get(), | 
|  | b_.get(), | 
|  | per_solve_options, | 
|  | x_unregularized.data()); | 
|  |  | 
|  | // Regularized solution | 
|  | per_solve_options.D = D_.get(); | 
|  | regularized_solve_summary = | 
|  | solver->Solve(transformed_A.get(), | 
|  | b_.get(), | 
|  | per_solve_options, | 
|  | x_regularized.data()); | 
|  |  | 
|  | EXPECT_EQ(unregularized_solve_summary.termination_type, TOLERANCE); | 
|  |  | 
|  | for (int i = 0; i < A_->num_cols(); ++i) { | 
|  | EXPECT_NEAR(sol_unregularized_[i], x_unregularized[i], 1e-8); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(regularized_solve_summary.termination_type, TOLERANCE); | 
|  | for (int i = 0; i < A_->num_cols(); ++i) { | 
|  | EXPECT_NEAR(sol_regularized_[i], x_regularized[i], 1e-8); | 
|  | } | 
|  | } | 
|  |  | 
|  | scoped_ptr<TripletSparseMatrix> A_; | 
|  | scoped_array<double> b_; | 
|  | scoped_array<double> D_; | 
|  | scoped_array<double> sol_unregularized_; | 
|  | scoped_array<double> sol_regularized_; | 
|  | }; | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, DenseQR) { | 
|  | TestSolver(DENSE_QR, SUITE_SPARSE); | 
|  | } | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | TEST_F(UnsymmetricLinearSolverTest, SparseNormalCholeskyUsingSuiteSparse) { | 
|  | TestSolver(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | TEST_F(UnsymmetricLinearSolverTest, SparseNormalCholeskyUsingCXSparse) { | 
|  | TestSolver(SPARSE_NORMAL_CHOLESKY, CX_SPARSE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |