| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2017 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // A simple C++ interface to the SuiteSparse and CHOLMOD libraries. |
| |
| #ifndef CERES_INTERNAL_SUITESPARSE_H_ |
| #define CERES_INTERNAL_SUITESPARSE_H_ |
| |
| // This include must come before any #ifndef check on Ceres compile options. |
| #include "ceres/internal/config.h" |
| |
| #ifndef CERES_NO_SUITESPARSE |
| |
| #include <cstring> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include "SuiteSparseQR.hpp" |
| #include "ceres/internal/disable_warnings.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/sparse_cholesky.h" |
| #include "cholmod.h" |
| #include "glog/logging.h" |
| |
| namespace ceres::internal { |
| |
| class CompressedRowSparseMatrix; |
| class TripletSparseMatrix; |
| |
| // The raw CHOLMOD and SuiteSparseQR libraries have a slightly |
| // cumbersome c like calling format. This object abstracts it away and |
| // provides the user with a simpler interface. The methods here cannot |
| // be static as a cholmod_common object serves as a global variable |
| // for all cholmod function calls. |
| class CERES_NO_EXPORT SuiteSparse { |
| public: |
| SuiteSparse(); |
| ~SuiteSparse(); |
| |
| // Functions for building cholmod_sparse objects from sparse |
| // matrices stored in triplet form. The matrix A is not |
| // modified. Called owns the result. |
| cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A); |
| |
| // This function works like CreateSparseMatrix, except that the |
| // return value corresponds to A' rather than A. |
| cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A); |
| |
| // Create a cholmod_sparse wrapper around the contents of A. This is |
| // a shallow object, which refers to the contents of A and does not |
| // use the SuiteSparse machinery to allocate memory. |
| cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); |
| |
| // Create a cholmod_dense vector around the contents of the array x. |
| // This is a shallow object, which refers to the contents of x and |
| // does not use the SuiteSparse machinery to allocate memory. |
| cholmod_dense CreateDenseVectorView(const double* x, int size); |
| |
| // Given a vector x, build a cholmod_dense vector of size out_size |
| // with the first in_size entries copied from x. If x is nullptr, then |
| // an all zeros vector is returned. Caller owns the result. |
| cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size); |
| |
| // The matrix A is scaled using the matrix whose diagonal is the |
| // vector scale. mode describes how scaling is applied. Possible |
| // values are CHOLMOD_ROW for row scaling - diag(scale) * A, |
| // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM |
| // for symmetric scaling which scales both the rows and the columns |
| // - diag(scale) * A * diag(scale). |
| void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) { |
| cholmod_scale(scale, mode, A, &cc_); |
| } |
| |
| // Create and return a matrix m = A * A'. Caller owns the |
| // result. The matrix A is not modified. |
| cholmod_sparse* AATranspose(cholmod_sparse* A) { |
| cholmod_sparse* m = cholmod_aat(A, nullptr, A->nrow, 1, &cc_); |
| m->stype = 1; // Pay attention to the upper triangular part. |
| return m; |
| } |
| |
| // y = alpha * A * x + beta * y. Only y is modified. |
| void SparseDenseMultiply(cholmod_sparse* A, |
| double alpha, |
| double beta, |
| cholmod_dense* x, |
| cholmod_dense* y) { |
| double alpha_[2] = {alpha, 0}; |
| double beta_[2] = {beta, 0}; |
| cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_); |
| } |
| |
| // Compute a symbolic factorization for A or AA' (if A is |
| // unsymmetric). If ordering_type is NATURAL, then no fill reducing |
| // ordering is computed, otherwise depending on the value of |
| // ordering_type AMD or Nested Dissection is used to compute a fill |
| // reducing ordering before the symbolic factorization is computed. |
| // |
| // A is not modified, only the pattern of non-zeros of A is used, |
| // the actual numerical values in A are of no consequence. |
| // |
| // message contains an explanation of the failures if any. |
| // |
| // Caller owns the result. |
| cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, |
| OrderingType ordering_type, |
| std::string* message); |
| |
| // Block oriented version of AnalyzeCholesky. |
| cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A, |
| OrderingType ordering_type, |
| const std::vector<int>& row_blocks, |
| const std::vector<int>& col_blocks, |
| std::string* message); |
| |
| // If A is symmetric, then compute the symbolic Cholesky |
| // factorization of A(ordering, ordering). If A is unsymmetric, then |
| // compute the symbolic factorization of |
| // A(ordering,:) A(ordering,:)'. |
| // |
| // A is not modified, only the pattern of non-zeros of A is used, |
| // the actual numerical values in A are of no consequence. |
| // |
| // message contains an explanation of the failures if any. |
| // |
| // Caller owns the result. |
| cholmod_factor* AnalyzeCholeskyWithGivenOrdering( |
| cholmod_sparse* A, |
| const std::vector<int>& ordering, |
| std::string* message); |
| |
| // Use the symbolic factorization in L, to find the numerical |
| // factorization for the matrix A or AA^T. Return true if |
| // successful, false otherwise. L contains the numeric factorization |
| // on return. |
| // |
| // message contains an explanation of the failures if any. |
| LinearSolverTerminationType Cholesky(cholmod_sparse* A, |
| cholmod_factor* L, |
| std::string* message); |
| |
| // Given a Cholesky factorization of a matrix A = LL^T, solve the |
| // linear system Ax = b, and return the result. If the Solve fails |
| // nullptr is returned. Caller owns the result. |
| // |
| // message contains an explanation of the failures if any. |
| cholmod_dense* Solve(cholmod_factor* L, |
| cholmod_dense* b, |
| std::string* message); |
| |
| // Find a fill reducing ordering. ordering is expected to be large |
| // enough to hold the ordering. ordering_type must be AMD or NESDIS. |
| bool Ordering(cholmod_sparse* matrix, |
| OrderingType ordering_type, |
| int* ordering); |
| |
| // Find the block oriented fill reducing ordering of a matrix A, |
| // whose row and column blocks are given by row_blocks, and |
| // col_blocks respectively. The matrix may or may not be |
| // symmetric. The entries of col_blocks do not need to sum to the |
| // number of columns in A. If this is the case, only the first |
| // sum(col_blocks) are used to compute the ordering. |
| // |
| // By virtue of the modeling layer in Ceres being block oriented, |
| // all the matrices used by Ceres are also block oriented. When |
| // doing sparse direct factorization of these matrices the |
| // fill-reducing ordering algorithms can either be run on the block |
| // or the scalar form of these matrices. But since the underlying |
| // matrices are block oriented, it is worth running the fill |
| // reducing ordering on just the block structure of these matrices |
| // and then lifting these block orderings to a full scalar |
| // ordering. This preserves the block structure of the permuted |
| // matrix, and exposes more of the super-nodal structure of the |
| // matrix to the numerical factorization routines. |
| bool BlockOrdering(const cholmod_sparse* A, |
| OrderingType ordering_type, |
| const std::vector<int>& row_blocks, |
| const std::vector<int>& col_blocks, |
| std::vector<int>* ordering); |
| |
| // Nested dissection is only available if SuiteSparse is compiled |
| // with Metis support. |
| static bool IsNestedDissectionAvailable(); |
| |
| // Find a fill reducing approximate minimum degree |
| // ordering. constraints is an array which associates with each |
| // column of the matrix an elimination group. i.e., all columns in |
| // group 0 are eliminated first, all columns in group 1 are |
| // eliminated next etc. This function finds a fill reducing ordering |
| // that obeys these constraints. |
| // |
| // Calling ApproximateMinimumDegreeOrdering is equivalent to calling |
| // ConstrainedApproximateMinimumDegreeOrdering with a constraint |
| // array that puts all columns in the same elimination group. |
| bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, |
| int* constraints, |
| int* ordering); |
| |
| void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); } |
| void Free(cholmod_dense* m) { cholmod_free_dense(&m, &cc_); } |
| void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); } |
| |
| void Print(cholmod_sparse* m, const std::string& name) { |
| cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_); |
| } |
| |
| void Print(cholmod_dense* m, const std::string& name) { |
| cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_); |
| } |
| |
| void Print(cholmod_triplet* m, const std::string& name) { |
| cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_); |
| } |
| |
| cholmod_common* mutable_cc() { return &cc_; } |
| |
| private: |
| cholmod_common cc_; |
| }; |
| |
| class CERES_NO_EXPORT SuiteSparseCholesky final : public SparseCholesky { |
| public: |
| static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type); |
| |
| // SparseCholesky interface. |
| ~SuiteSparseCholesky() override; |
| CompressedRowSparseMatrix::StorageType StorageType() const final; |
| LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs, |
| std::string* message) final; |
| LinearSolverTerminationType Solve(const double* rhs, |
| double* solution, |
| std::string* message) final; |
| |
| private: |
| explicit SuiteSparseCholesky(const OrderingType ordering_type); |
| |
| const OrderingType ordering_type_; |
| SuiteSparse ss_; |
| cholmod_factor* factor_; |
| }; |
| |
| } // namespace ceres::internal |
| |
| #include "ceres/internal/reenable_warnings.h" |
| |
| #else // CERES_NO_SUITESPARSE |
| |
| typedef void cholmod_factor; |
| |
| #include "ceres/internal/disable_warnings.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| class CERES_NO_EXPORT SuiteSparse { |
| public: |
| // Nested dissection is only available if SuiteSparse is compiled |
| // with Metis support. |
| static bool IsNestedDissectionAvailable() { return false; } |
| void Free(void* /*arg*/) {} |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #include "ceres/internal/reenable_warnings.h" |
| |
| #endif // CERES_NO_SUITESPARSE |
| |
| #endif // CERES_INTERNAL_SUITESPARSE_H_ |