| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/block_sparse_matrix.h" |
| |
| #include <memory> |
| #include <string> |
| #include "ceres/casts.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/linear_least_squares_problems.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| class BlockSparseMatrixTest : public ::testing::Test { |
| protected : |
| virtual void SetUp() { |
| std::unique_ptr<LinearLeastSquaresProblem> problem( |
| CreateLinearLeastSquaresProblemFromId(2)); |
| CHECK_NOTNULL(problem.get()); |
| A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); |
| |
| problem.reset(CreateLinearLeastSquaresProblemFromId(1)); |
| CHECK_NOTNULL(problem.get()); |
| B_.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); |
| |
| CHECK_EQ(A_->num_rows(), B_->num_rows()); |
| CHECK_EQ(A_->num_cols(), B_->num_cols()); |
| CHECK_EQ(A_->num_nonzeros(), B_->num_nonzeros()); |
| } |
| |
| std::unique_ptr<BlockSparseMatrix> A_; |
| std::unique_ptr<TripletSparseMatrix> B_; |
| }; |
| |
| TEST_F(BlockSparseMatrixTest, SetZeroTest) { |
| A_->SetZero(); |
| EXPECT_EQ(13, A_->num_nonzeros()); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, RightMultiplyTest) { |
| Vector y_a = Vector::Zero(A_->num_rows()); |
| Vector y_b = Vector::Zero(A_->num_rows()); |
| for (int i = 0; i < A_->num_cols(); ++i) { |
| Vector x = Vector::Zero(A_->num_cols()); |
| x[i] = 1.0; |
| A_->RightMultiply(x.data(), y_a.data()); |
| B_->RightMultiply(x.data(), y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| } |
| |
| TEST_F(BlockSparseMatrixTest, LeftMultiplyTest) { |
| Vector y_a = Vector::Zero(A_->num_cols()); |
| Vector y_b = Vector::Zero(A_->num_cols()); |
| for (int i = 0; i < A_->num_rows(); ++i) { |
| Vector x = Vector::Zero(A_->num_rows()); |
| x[i] = 1.0; |
| A_->LeftMultiply(x.data(), y_a.data()); |
| B_->LeftMultiply(x.data(), y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| } |
| |
| TEST_F(BlockSparseMatrixTest, SquaredColumnNormTest) { |
| Vector y_a = Vector::Zero(A_->num_cols()); |
| Vector y_b = Vector::Zero(A_->num_cols()); |
| A_->SquaredColumnNorm(y_a.data()); |
| B_->SquaredColumnNorm(y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, ToDenseMatrixTest) { |
| Matrix m_a; |
| Matrix m_b; |
| A_->ToDenseMatrix(&m_a); |
| B_->ToDenseMatrix(&m_b); |
| EXPECT_LT((m_a - m_b).norm(), 1e-12); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, AppendRows) { |
| std::unique_ptr<LinearLeastSquaresProblem> problem( |
| CreateLinearLeastSquaresProblemFromId(2)); |
| std::unique_ptr<BlockSparseMatrix> m( |
| down_cast<BlockSparseMatrix*>(problem->A.release())); |
| A_->AppendRows(*m); |
| EXPECT_EQ(A_->num_rows(), 2 * m->num_rows()); |
| EXPECT_EQ(A_->num_cols(), m->num_cols()); |
| |
| problem.reset(CreateLinearLeastSquaresProblemFromId(1)); |
| std::unique_ptr<TripletSparseMatrix> m2( |
| down_cast<TripletSparseMatrix*>(problem->A.release())); |
| B_->AppendRows(*m2); |
| |
| Vector y_a = Vector::Zero(A_->num_rows()); |
| Vector y_b = Vector::Zero(A_->num_rows()); |
| for (int i = 0; i < A_->num_cols(); ++i) { |
| Vector x = Vector::Zero(A_->num_cols()); |
| x[i] = 1.0; |
| y_a.setZero(); |
| y_b.setZero(); |
| |
| A_->RightMultiply(x.data(), y_a.data()); |
| B_->RightMultiply(x.data(), y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| } |
| |
| TEST_F(BlockSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) { |
| const std::vector<Block>& column_blocks = A_->block_structure()->cols; |
| const int num_cols = |
| column_blocks.back().size + column_blocks.back().position; |
| Vector diagonal(num_cols); |
| for (int i = 0; i < num_cols; ++i) { |
| diagonal(i) = 2 * i * i + 1; |
| } |
| std::unique_ptr<BlockSparseMatrix> appendage( |
| BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks)); |
| |
| A_->AppendRows(*appendage); |
| Vector y_a, y_b; |
| y_a.resize(A_->num_rows()); |
| y_b.resize(A_->num_rows()); |
| for (int i = 0; i < A_->num_cols(); ++i) { |
| Vector x = Vector::Zero(A_->num_cols()); |
| x[i] = 1.0; |
| y_a.setZero(); |
| y_b.setZero(); |
| |
| A_->RightMultiply(x.data(), y_a.data()); |
| B_->RightMultiply(x.data(), y_b.data()); |
| EXPECT_LT((y_a.head(B_->num_rows()) - y_b.head(B_->num_rows())).norm(), 1e-12); |
| Vector expected_tail = Vector::Zero(A_->num_cols()); |
| expected_tail(i) = diagonal(i); |
| EXPECT_LT((y_a.tail(A_->num_cols()) - expected_tail).norm(), 1e-12); |
| } |
| |
| |
| A_->DeleteRowBlocks(column_blocks.size()); |
| EXPECT_EQ(A_->num_rows(), B_->num_rows()); |
| EXPECT_EQ(A_->num_cols(), B_->num_cols()); |
| |
| y_a.resize(A_->num_rows()); |
| y_b.resize(A_->num_rows()); |
| for (int i = 0; i < A_->num_cols(); ++i) { |
| Vector x = Vector::Zero(A_->num_cols()); |
| x[i] = 1.0; |
| y_a.setZero(); |
| y_b.setZero(); |
| |
| A_->RightMultiply(x.data(), y_a.data()); |
| B_->RightMultiply(x.data(), y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| } |
| |
| TEST(BlockSparseMatrix, CreateDiagonalMatrix) { |
| std::vector<Block> column_blocks; |
| column_blocks.push_back(Block(2, 0)); |
| column_blocks.push_back(Block(1, 2)); |
| column_blocks.push_back(Block(3, 3)); |
| const int num_cols = |
| column_blocks.back().size + column_blocks.back().position; |
| Vector diagonal(num_cols); |
| for (int i = 0; i < num_cols; ++i) { |
| diagonal(i) = 2 * i * i + 1; |
| } |
| |
| std::unique_ptr<BlockSparseMatrix> m( |
| BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks)); |
| const CompressedRowBlockStructure* bs = m->block_structure(); |
| EXPECT_EQ(bs->cols.size(), column_blocks.size()); |
| for (int i = 0; i < column_blocks.size(); ++i) { |
| EXPECT_EQ(bs->cols[i].size, column_blocks[i].size); |
| EXPECT_EQ(bs->cols[i].position, column_blocks[i].position); |
| } |
| EXPECT_EQ(m->num_rows(), m->num_cols()); |
| Vector x = Vector::Ones(num_cols); |
| Vector y = Vector::Zero(num_cols); |
| m->RightMultiply(x.data(), y.data()); |
| for (int i = 0; i < num_cols; ++i) { |
| EXPECT_NEAR(y[i], diagonal[i], std::numeric_limits<double>::epsilon()); |
| } |
| } |
| |
| |
| } // namespace internal |
| } // namespace ceres |