blob: 89f56dff4aca644ca8caa180620be973c09d7b1d [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2020 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: darius.rueckert@fau.de (Darius Rueckert)
#include <memory>
#include "benchmark/benchmark.h"
#include "ceres/autodiff_benchmarks/brdf_cost_function.h"
#include "ceres/autodiff_benchmarks/linear_cost_functions.h"
#include "ceres/autodiff_benchmarks/snavely_reprojection_error.h"
#include "ceres/ceres.h"
#include "ceres/codegen/test_utils.h"
namespace ceres {
#ifdef WITH_CODE_GENERATION
static void BM_Linear1CodeGen(benchmark::State& state) {
double parameter_block1[] = {1.};
double* parameters[] = {parameter_block1};
double jacobian1[1];
double residuals[1];
double* jacobians[] = {jacobian1};
std::unique_ptr<ceres::CostFunction> cost_function(new Linear1CostFunction());
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK(BM_Linear1CodeGen)->Arg(0)->Arg(1);
#endif
static void BM_Linear1AutoDiff(benchmark::State& state) {
using FunctorType =
ceres::internal::CostFunctionToFunctor<Linear1CostFunction>;
double parameter_block1[] = {1.};
double* parameters[] = {parameter_block1};
double jacobian1[1];
double residuals[1];
double* jacobians[] = {jacobian1};
std::unique_ptr<ceres::CostFunction> cost_function(
new ceres::AutoDiffCostFunction<FunctorType, 1, 1>(new FunctorType()));
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK(BM_Linear1AutoDiff)->Arg(0)->Arg(1);
;
#ifdef WITH_CODE_GENERATION
static void BM_Linear10CodeGen(benchmark::State& state) {
double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.};
double* parameters[] = {parameter_block1};
double jacobian1[10 * 10];
double residuals[10];
double* jacobians[] = {jacobian1};
std::unique_ptr<ceres::CostFunction> cost_function(
new Linear10CostFunction());
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK(BM_Linear10CodeGen)->Arg(0)->Arg(1);
;
#endif
static void BM_Linear10AutoDiff(benchmark::State& state) {
using FunctorType =
ceres::internal::CostFunctionToFunctor<Linear10CostFunction>;
double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.};
double* parameters[] = {parameter_block1};
double jacobian1[10 * 10];
double residuals[10];
double* jacobians[] = {jacobian1};
std::unique_ptr<ceres::CostFunction> cost_function(
new ceres::AutoDiffCostFunction<FunctorType, 10, 10>(new FunctorType()));
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK(BM_Linear10AutoDiff)->Arg(0)->Arg(1);
;
// From the NIST problem collection.
struct Rat43CostFunctor {
Rat43CostFunctor(const double x, const double y) : x_(x), y_(y) {}
template <typename T>
bool operator()(const T* parameters, T* residuals) const {
const T& b1 = parameters[0];
const T& b2 = parameters[1];
const T& b3 = parameters[2];
const T& b4 = parameters[3];
residuals[0] = b1 * pow(1.0 + exp(b2 - b3 * x_), -1.0 / b4) - y_;
return true;
}
private:
const double x_;
const double y_;
};
static void BM_Rat43AutoDiff(benchmark::State& state) {
double parameter_block1[] = {1., 2., 3., 4.};
double* parameters[] = {parameter_block1};
double jacobian1[] = {0.0, 0.0, 0.0, 0.0};
double residuals;
double* jacobians[] = {jacobian1};
const double x = 0.2;
const double y = 0.3;
std::unique_ptr<ceres::CostFunction> cost_function(
new ceres::AutoDiffCostFunction<Rat43CostFunctor, 1, 4>(
new Rat43CostFunctor(x, y)));
for (auto _ : state) {
cost_function->Evaluate(
parameters, &residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK(BM_Rat43AutoDiff)->Arg(0)->Arg(1);
#ifdef WITH_CODE_GENERATION
static void BM_SnavelyReprojectionCodeGen(benchmark::State& state) {
double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9.};
double parameter_block2[] = {1., 2., 3.};
double* parameters[] = {parameter_block1, parameter_block2};
double jacobian1[2 * 9];
double jacobian2[2 * 3];
double residuals[2];
double* jacobians[] = {jacobian1, jacobian2};
const double x = 0.2;
const double y = 0.3;
std::unique_ptr<ceres::CostFunction> cost_function(
new SnavelyReprojectionError(x, y));
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK(BM_SnavelyReprojectionCodeGen)->Arg(0)->Arg(1);
;
#endif
static void BM_SnavelyReprojectionAutoDiff(benchmark::State& state) {
using FunctorType =
ceres::internal::CostFunctionToFunctor<SnavelyReprojectionError>;
double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9.};
double parameter_block2[] = {1., 2., 3.};
double* parameters[] = {parameter_block1, parameter_block2};
double jacobian1[2 * 9];
double jacobian2[2 * 3];
double residuals[2];
double* jacobians[] = {jacobian1, jacobian2};
const double x = 0.2;
const double y = 0.3;
std::unique_ptr<ceres::CostFunction> cost_function(
new ceres::AutoDiffCostFunction<FunctorType, 2, 9, 3>(
new FunctorType(x, y)));
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK(BM_SnavelyReprojectionAutoDiff)->Arg(0)->Arg(1);
;
#ifdef WITH_CODE_GENERATION
static void BM_BrdfCodeGen(benchmark::State& state) {
using FunctorType = ceres::internal::CostFunctionToFunctor<Brdf>;
double material[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.};
auto c = Eigen::Vector3d(0.1, 0.2, 0.3);
auto n = Eigen::Vector3d(-0.1, 0.5, 0.2).normalized();
auto v = Eigen::Vector3d(0.5, -0.2, 0.9).normalized();
auto l = Eigen::Vector3d(-0.3, 0.4, -0.3).normalized();
auto x = Eigen::Vector3d(0.5, 0.7, -0.1).normalized();
auto y = Eigen::Vector3d(0.2, -0.2, -0.2).normalized();
double* parameters[7] = {
material, c.data(), n.data(), v.data(), l.data(), x.data(), y.data()};
double jacobian[(10 + 6 * 3) * 3];
double residuals[3];
double* jacobians[7] = {
jacobian + 0,
jacobian + 10 * 3,
jacobian + 13 * 3,
jacobian + 16 * 3,
jacobian + 19 * 3,
jacobian + 22 * 3,
jacobian + 25 * 3,
};
std::unique_ptr<ceres::CostFunction> cost_function(new Brdf());
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK(BM_BrdfCodeGen)->Arg(0)->Arg(1);
;
#endif
static void BM_BrdfAutoDiff(benchmark::State& state) {
using FunctorType = ceres::internal::CostFunctionToFunctor<Brdf>;
double material[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.};
auto c = Eigen::Vector3d(0.1, 0.2, 0.3);
auto n = Eigen::Vector3d(-0.1, 0.5, 0.2).normalized();
auto v = Eigen::Vector3d(0.5, -0.2, 0.9).normalized();
auto l = Eigen::Vector3d(-0.3, 0.4, -0.3).normalized();
auto x = Eigen::Vector3d(0.5, 0.7, -0.1).normalized();
auto y = Eigen::Vector3d(0.2, -0.2, -0.2).normalized();
double* parameters[7] = {
material, c.data(), n.data(), v.data(), l.data(), x.data(), y.data()};
double jacobian[(10 + 6 * 3) * 3];
double residuals[3];
double* jacobians[7] = {
jacobian + 0,
jacobian + 10 * 3,
jacobian + 13 * 3,
jacobian + 16 * 3,
jacobian + 19 * 3,
jacobian + 22 * 3,
jacobian + 25 * 3,
};
std::unique_ptr<ceres::CostFunction> cost_function(
new ceres::AutoDiffCostFunction<FunctorType, 3, 10, 3, 3, 3, 3, 3, 3>(
new FunctorType));
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK(BM_BrdfAutoDiff)->Arg(0)->Arg(1);
;
} // namespace ceres
BENCHMARK_MAIN();