|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2018 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: alexs.mac@gmail.com (Alex Stewart) | 
|  |  | 
|  | #ifndef CERES_INTERNAL_ACCELERATE_SPARSE_H_ | 
|  | #define CERES_INTERNAL_ACCELERATE_SPARSE_H_ | 
|  |  | 
|  | // This include must come before any #ifndef check on Ceres compile options. | 
|  | #include "ceres/internal/config.h" | 
|  |  | 
|  | #ifndef CERES_NO_ACCELERATE_SPARSE | 
|  |  | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Accelerate.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/sparse_cholesky.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | class CompressedRowSparseMatrix; | 
|  | class TripletSparseMatrix; | 
|  |  | 
|  | template <typename Scalar> | 
|  | struct SparseTypesTrait {}; | 
|  |  | 
|  | template <> | 
|  | struct SparseTypesTrait<double> { | 
|  | using DenseVector = DenseVector_Double; | 
|  | using SparseMatrix = SparseMatrix_Double; | 
|  | using SymbolicFactorization = SparseOpaqueSymbolicFactorization; | 
|  | using NumericFactorization = SparseOpaqueFactorization_Double; | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct SparseTypesTrait<float> { | 
|  | using DenseVector = DenseVector_Float; | 
|  | using SparseMatrix = SparseMatrix_Float; | 
|  | using SymbolicFactorization = SparseOpaqueSymbolicFactorization; | 
|  | using NumericFactorization = SparseOpaqueFactorization_Float; | 
|  | }; | 
|  |  | 
|  | template <typename Scalar> | 
|  | class AccelerateSparse { | 
|  | public: | 
|  | using DenseVector = typename SparseTypesTrait<Scalar>::DenseVector; | 
|  | // Use ASSparseMatrix to avoid collision with ceres::internal::SparseMatrix. | 
|  | using ASSparseMatrix = typename SparseTypesTrait<Scalar>::SparseMatrix; | 
|  | using SymbolicFactorization = | 
|  | typename SparseTypesTrait<Scalar>::SymbolicFactorization; | 
|  | using NumericFactorization = | 
|  | typename SparseTypesTrait<Scalar>::NumericFactorization; | 
|  |  | 
|  | // Solves a linear system given its symbolic (reference counted within | 
|  | // NumericFactorization) and numeric factorization. | 
|  | void Solve(NumericFactorization* numeric_factor, | 
|  | DenseVector* rhs_and_solution); | 
|  |  | 
|  | // Note: Accelerate's API passes/returns its objects by value, but as the | 
|  | //       objects contain pointers to the underlying data these copies are | 
|  | //       all shallow (in some cases Accelerate also reference counts the | 
|  | //       objects internally). | 
|  | ASSparseMatrix CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); | 
|  | // Computes a symbolic factorisation of A that can be used in Solve(). | 
|  | SymbolicFactorization AnalyzeCholesky(OrderingType ordering_type, | 
|  | ASSparseMatrix* A); | 
|  | // Compute the numeric Cholesky factorization of A, given its | 
|  | // symbolic factorization. | 
|  | NumericFactorization Cholesky(ASSparseMatrix* A, | 
|  | SymbolicFactorization* symbolic_factor); | 
|  | // Reuse the NumericFactorization from a previous matrix with the same | 
|  | // symbolic factorization to represent a new numeric factorization. | 
|  | void Cholesky(ASSparseMatrix* A, NumericFactorization* numeric_factor); | 
|  |  | 
|  | private: | 
|  | std::vector<long> column_starts_; | 
|  | std::vector<uint8_t> solve_workspace_; | 
|  | std::vector<uint8_t> factorization_workspace_; | 
|  | // Storage for the values of A if Scalar != double (necessitating a copy). | 
|  | Eigen::Matrix<Scalar, Eigen::Dynamic, 1> values_; | 
|  | }; | 
|  |  | 
|  | // An implementation of SparseCholesky interface using Apple's Accelerate | 
|  | // framework. | 
|  | template <typename Scalar> | 
|  | class AppleAccelerateCholesky final : public SparseCholesky { | 
|  | public: | 
|  | // Factory | 
|  | static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type); | 
|  |  | 
|  | // SparseCholesky interface. | 
|  | virtual ~AppleAccelerateCholesky(); | 
|  | CompressedRowSparseMatrix::StorageType StorageType() const; | 
|  | LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs, | 
|  | std::string* message) final; | 
|  | LinearSolverTerminationType Solve(const double* rhs, | 
|  | double* solution, | 
|  | std::string* message) final; | 
|  |  | 
|  | private: | 
|  | AppleAccelerateCholesky(const OrderingType ordering_type); | 
|  | void FreeSymbolicFactorization(); | 
|  | void FreeNumericFactorization(); | 
|  |  | 
|  | const OrderingType ordering_type_; | 
|  | AccelerateSparse<Scalar> as_; | 
|  | std::unique_ptr<typename AccelerateSparse<Scalar>::SymbolicFactorization> | 
|  | symbolic_factor_; | 
|  | std::unique_ptr<typename AccelerateSparse<Scalar>::NumericFactorization> | 
|  | numeric_factor_; | 
|  | // Copy of rhs/solution if Scalar != double (necessitating a copy). | 
|  | Eigen::Matrix<Scalar, Eigen::Dynamic, 1> scalar_rhs_and_solution_; | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_NO_ACCELERATE_SPARSE | 
|  |  | 
|  | #endif  // CERES_INTERNAL_ACCELERATE_SPARSE_H_ |