| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/tiny_solver_cost_function_adapter.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <memory> | 
 |  | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/sized_cost_function.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 |  | 
 | class CostFunction2x3 : public SizedCostFunction<2, 3> { | 
 |   bool Evaluate(double const* const* parameters, | 
 |                 double* residuals, | 
 |                 double** jacobians) const final { | 
 |     double x = parameters[0][0]; | 
 |     double y = parameters[0][1]; | 
 |     double z = parameters[0][2]; | 
 |  | 
 |     residuals[0] = x + 2 * y + 4 * z; | 
 |     residuals[1] = y * z; | 
 |  | 
 |     if (jacobians && jacobians[0]) { | 
 |       jacobians[0][0] = 1; | 
 |       jacobians[0][1] = 2; | 
 |       jacobians[0][2] = 4; | 
 |  | 
 |       jacobians[0][3 + 0] = 0; | 
 |       jacobians[0][3 + 1] = z; | 
 |       jacobians[0][3 + 2] = y; | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | template <int kNumResiduals, int kNumParameters> | 
 | void TestHelper() { | 
 |   std::unique_ptr<CostFunction> cost_function(new CostFunction2x3); | 
 |   using CostFunctionAdapter = | 
 |       TinySolverCostFunctionAdapter<kNumResiduals, kNumParameters>; | 
 |   CostFunctionAdapter cfa(*cost_function); | 
 |   EXPECT_EQ(CostFunctionAdapter::NUM_RESIDUALS, kNumResiduals); | 
 |   EXPECT_EQ(CostFunctionAdapter::NUM_PARAMETERS, kNumParameters); | 
 |  | 
 |   EXPECT_EQ(cfa.NumResiduals(), 2); | 
 |   EXPECT_EQ(cfa.NumParameters(), 3); | 
 |  | 
 |   Eigen::Matrix<double, 2, 1> actual_residuals, expected_residuals; | 
 |   Eigen::Matrix<double, 2, 3, Eigen::ColMajor> actual_jacobian; | 
 |   Eigen::Matrix<double, 2, 3, Eigen::RowMajor> expected_jacobian; | 
 |  | 
 |   double xyz[3] = {1.0, -1.0, 2.0}; | 
 |   double* parameters[1] = {xyz}; | 
 |  | 
 |   // Check that residual only evaluation works. | 
 |   cost_function->Evaluate(parameters, expected_residuals.data(), nullptr); | 
 |   cfa(xyz, actual_residuals.data(), nullptr); | 
 |   EXPECT_NEAR( | 
 |       (expected_residuals - actual_residuals).norm() / actual_residuals.norm(), | 
 |       0.0, | 
 |       std::numeric_limits<double>::epsilon()) | 
 |       << "\nExpected residuals: " << expected_residuals.transpose() | 
 |       << "\nActual residuals: " << actual_residuals.transpose(); | 
 |  | 
 |   // Check that residual and jacobian evaluation works. | 
 |   double* jacobians[1] = {expected_jacobian.data()}; | 
 |   cost_function->Evaluate(parameters, expected_residuals.data(), jacobians); | 
 |   cfa(xyz, actual_residuals.data(), actual_jacobian.data()); | 
 |  | 
 |   EXPECT_NEAR( | 
 |       (expected_residuals - actual_residuals).norm() / actual_residuals.norm(), | 
 |       0.0, | 
 |       std::numeric_limits<double>::epsilon()) | 
 |       << "\nExpected residuals: " << expected_residuals.transpose() | 
 |       << "\nActual residuals: " << actual_residuals.transpose(); | 
 |  | 
 |   EXPECT_NEAR( | 
 |       (expected_jacobian - actual_jacobian).norm() / actual_jacobian.norm(), | 
 |       0.0, | 
 |       std::numeric_limits<double>::epsilon()) | 
 |       << "\nExpected jacobian: " << expected_jacobian.transpose() | 
 |       << "\nActual jacobian: " << actual_jacobian.transpose(); | 
 | } | 
 |  | 
 | TEST(TinySolverCostFunctionAdapter, StaticResidualsStaticParameterBlock) { | 
 |   TestHelper<2, 3>(); | 
 | } | 
 |  | 
 | TEST(TinySolverCostFunctionAdapter, DynamicResidualsStaticParameterBlock) { | 
 |   TestHelper<Eigen::Dynamic, 3>(); | 
 | } | 
 |  | 
 | TEST(TinySolverCostFunctionAdapter, StaticResidualsDynamicParameterBlock) { | 
 |   TestHelper<2, Eigen::Dynamic>(); | 
 | } | 
 |  | 
 | TEST(TinySolverCostFunctionAdapter, DynamicResidualsDynamicParameterBlock) { | 
 |   TestHelper<Eigen::Dynamic, Eigen::Dynamic>(); | 
 | } | 
 |  | 
 | }  // namespace ceres |